Strumenti Utente

Strumenti Sito


wikicdm9:2023-07-03_note

Differenze

Queste sono le differenze tra la revisione selezionata e la versione attuale della pagina.

Link a questa pagina di confronto

Prossima revisione
Revisione precedente
wikicdm9:2023-07-03_note [2023/07/05 11:00] – creata ebertocchiwikicdm9:2023-07-03_note [2023/07/05 12:42] (versione attuale) – [Es.2] ebertocchi
Linea 1: Linea 1:
-FIXME!! 
  
 ===== Es.1 ===== ===== Es.1 =====
Linea 10: Linea 9:
 I fattori di effetto intaglio a sforzo normale $\beta_{k,N}$ e a flessione $\beta_{k,f}$ si derivano quindi dalla (4.4.1) p. 309. I fattori di effetto intaglio a sforzo normale $\beta_{k,N}$ e a flessione $\beta_{k,f}$ si derivano quindi dalla (4.4.1) p. 309.
  
-Dal diagramma di Goodman del materiale a p. 254 si deriva un valori di snervamento a flessione $R_{s,f}$, snervamento a sforzo normale $R_{s,N}$ e tensione critica per sollecitazioni flessionali modulate all'origine $\sigma_\mathrm{crit,or}$ pari rispettivamente 1070900 820 MPa.+Dal diagramma di Goodman del materiale a p. 250 si deriva un valori di snervamento a flessione $R_{s,f}$, snervamento a sforzo normale $R_{s,N}$ pari rispettivamente a 430 360 MPa. 
 + 
 +La tensione critica per sollecitazioni flessionali modulate all'origine $\sigma_\mathrm{crit,f,or}$ coincide con l'associata tensione di snervamento, così come le tensioni critiche associate a cicli pulsanti (k>0.5) secondo esplosione a ventaglio.  
 + 
 +Volendo proprio calcolarlo, il coeff. $k$ risulta essere pari a 0.55, e $\sigma_\mathrm{crit,f,k=0.55}=430$ MPa.
  
 Si utilizzano valori associati alla sollecitazione flessionale in presenza di gradiente tensionale nell'intorno del punto massimamente sollecitato (condizione di inizio plasticizzazione e di caricamento affaticante), e i valori associati alla sollecitazione di sforzo normale se la distribuzione delle tensioni è uniforme (condizione di completa plasticizzazione). Si utilizzano valori associati alla sollecitazione flessionale in presenza di gradiente tensionale nell'intorno del punto massimamente sollecitato (condizione di inizio plasticizzazione e di caricamento affaticante), e i valori associati alla sollecitazione di sforzo normale se la distribuzione delle tensioni è uniforme (condizione di completa plasticizzazione).
  
-Calcolata l'area resistente in $A=\frac{\pi d^2}{4}$, il carico di inizio plasticizzazione si valuta in $$F=\frac{A \cdot R_{s,f}}{\alpha_{k,N}},$$ il carico di completa plasticizzazione si valuta in $$F=A \cdot R_{s,N}$$ e il carico assiale critico per cicli all'origine si valuta in $$F=\frac{A \cdot \sigma_{crit,or}}{\beta_{k,N}}.$$+Calcolata l'area resistente in $A=\frac{\pi d^2}{4}$, il carico di inizio plasticizzazione si valuta in $$F=\frac{A \cdot R_{s,f}}{\alpha_{k,N}},$$ il carico di completa plasticizzazione si valuta in $$F=A \cdot R_{s,N}$$ e il carico assiale critico per il ciclo pulsante dato si valuta in $$F=\frac{A \cdot \sigma_\mathrm{crit,f,k=0.55}}{\beta_{k,N}}.$$
  
-Qualora la barra sia sollecitata da un tiro assiale eccentrico $P$, allo sforzo normale $N=P$ si affianca un momento flettente $M_f=P\cdot e$; tale momento nasce come momento di trasporto associato allo scostamento della retta d'azione della forza $P$ verso la posizione baricentrica; ambo le sollecitazioni mantengono la natura affaticante all'origine propria di $P$.+Qualora la barra sia sollecitata da un tiro assiale eccentrico $P$, allo sforzo normale $N=P$ si affianca un momento flettente $M_f=P\cdot e$, con $e=D/2$, ove $D$ è il diametro della testa; tale momento nasce come momento di trasporto associato allo scostamento della retta d'azione della forza $P$ passante per il punto di contatto allo spigolo, e l'asse baricentrico; ambo le sollecitazioni mantengono la natura affaticante all'origine propria di $P$.
  
 Le componenti assiali di tensione indotte da sforzo normale e momento flettente si compongono addittivamente ad un punto (il più sollecitato) del raccordo, dando luogo ad una tensione effettiva cumulativa pari a  Le componenti assiali di tensione indotte da sforzo normale e momento flettente si compongono addittivamente ad un punto (il più sollecitato) del raccordo, dando luogo ad una tensione effettiva cumulativa pari a 
Linea 24: Linea 27:
 con $W=\frac{\pi d^3}{32}$; il coefficiente di sicurezza associato al caricamento $P$ eccentrico si valuta infine come  con $W=\frac{\pi d^3}{32}$; il coefficiente di sicurezza associato al caricamento $P$ eccentrico si valuta infine come 
 $$ $$
-n=\frac{\sigma_\mathrm{crit,or}}{\sigma_\mathrm{eff}}+n=\frac{\sigma_\mathrm{crit,f,k=0.55}}{\sigma_\mathrm{eff}}
 $$ $$
  
-Essendo stato già preso in considerazione nella prima parte dell'esercizio, in questa seconda parte dell'esercizio il testo non ribadiva esplicitamente il ruolo dello sforzo normale: rimane tuttavia che la componente flessionale di tensione citata in questa seconda parte dell'esercizio si affianca (e non si sostituisce) a quella indotta dal solo sforzo normale.+
 ===== Es.2 ===== ===== Es.2 =====
  
-xxx+Siano $d$ il diametro del filo, $n$ il numero di spire, $R$ il raggio medio di spira, $G=\frac{E}{2\left(1+\nu\right)}$ il modulo di taglio.
  
 +Il carico di incipiente plasticizzazione si valuta eguagliando la tensione tagliante di snervamento -- stimata in $\tau_\mathrm{s} = R_\mathrm{s}/2$ in assenza di diverse, specifiche indicazioni -- alla tensione tagliante calcolata secondo le formule (2.3) p. 644; tale carico viene quindi scalato del coefficiente di sicurezza indicato.
 +
 +La freccia della molla viene calcolata utilizzando la formula (2.7) p.646, mentre l'altezza a pacco risulta pari a $nd$.
 +
 +La massa della molla si valuta come prodotto del volume del filo $V = \frac{\pi d^2}{4} \cdot 2 \pi R n$ e della densità del materiale; utilizzando quote in ''mm'', il volume risulta espresso in ''mm^3''; per ottenere un peso in grammi, la densità deve essere espressa in ''g/mm^3'', nello specifico $\rho=4.5\cdot 10^{-3}$ ''g/mm^3''.
 ===== Es.3 ===== ===== Es.3 =====
 L'esercizio si svolge con procedura analoga a quella descritta nel paragrafo 2.1 a p. 549, avendo cura di valutare il momento d'inerzia $J$, il modulo di resistenza a flessione $W$ e il modulo di resistenza a torsione $W_p$ secondo le formule riportate a p. 44  per la sezione circolare cava. L'esercizio si svolge con procedura analoga a quella descritta nel paragrafo 2.1 a p. 549, avendo cura di valutare il momento d'inerzia $J$, il modulo di resistenza a flessione $W$ e il modulo di resistenza a torsione $W_p$ secondo le formule riportate a p. 44  per la sezione circolare cava.
Linea 45: Linea 53:
 ===== Es.4 ===== ===== Es.4 =====
  
-xxx+Il piede di biella risulta tensionato solo quando la biella viene posta a trazione; tale azione trattiva risulta massima al punto morto superiore in fase di incrocio. 
 +In tale condizione, il piede è sollecitato dalle forze necessarie a decelerare le masse di pistone, spinotto e fasce elastiche((si trascura qui la massa della porzione di piede a valle della sezione critica)); l'accelerazione di riferimento è quella propria del pistone al punto morto superiore. 
 + 
 +Tali forze sono quantificate in $F_\mathrm{pb,pms,i}=a_\mathrm{pb,pms} \cdot m_\mathrm{psf}=13000\;\mathrm{N}$  come indicato sul testo.
  
 +I calcoli si sviluppano quindi secondo la procedura descritta nel paragrafo 2.4 p. 771, 
wikicdm9/2023-07-03_note.1688554823.txt.gz · Ultima modifica: 2023/07/05 11:00 da ebertocchi