Consideriamo un telaio a traliccio di una Formula SAE

Quello che si vuole fare è dimostrare l'equivalenza strutturale tra il telaio a traliccio standard (con tubi in acciaio) e un telaio monoscocca in materiale composito (fibra di carbonio, con struttura a sandwitch).

Per dimostrare l'equivalenza strutturale si compila un file excel composto da vari fogli, uno per ogni componente del telaio (Structural Equivalency Spreadsheet). Nel nostro caso andiamo ad analizzare il foglio del "front bulkhead" della formula SAE Unimore.

Quello che andremo a fare è confrontare due strutture di questo tipo

Il bulkhead del telaio a traliccio è costituito da tubi in acciaio di diametro esterno 25,4 mm e spessore 1,6 mm.

Il telaio monoscocca ha una configurazione come in figura, con la presenza di un foro rettangolare per consentire l'accesso dei cablaggi nell'abitacolo. Nel caso della formula SAE della nostra università questo foro è stato spostato più in alto in modo da avere sufficiente spazio sotto per poter collocare l'impattatore; in questo modo è possibile risparmiare peso poiché la piastra che si usa per ricoprire il foro può avere proprietà meccaniche scarse (e quindi peso limitato).

Per sfruttare la continuità di materiale della monoscocca il regolamento prevede che oltre a considerare il piano del bulkhead stesso si possano considerare anche 25,4 mm dello sviluppo longitudinale.

	Enter cons	truction type	Composite only			
Material Developments	Dessline	Vern Teles	X	Value Tatal	1	
Material Property	Steel	Stool	Other 1	Tour Iotai	-	
	Round	Round	NA			
Material name /grade	Steel	Steel	Your Mat. 1			
Youngs Modulus, E	2,00E+11	2,00E+11	4,07E+10			
Yield strength, Pa	3,05E+08	3,05E+08	2,14E+08			
UTS, Pa	3,65E+08	3,65E+08	2,14E+08			
Yield strength, welded, Pa	1,80E+08	1,80E+08	-			
UTS welded, Pa	3,00E+08	3,00E+08	-			
UTS shear, Pa	2,19E+08		1,60E+08			
Number of tubes	2	2				
Tube OD, mm	25,4	25,4				
Wall, mm	1,6	1,6				
Terrer and the second sec	-					
I nickness of panel, mm	_		24,16			
Thickness of core, mm			20			
Thickness of inner skin, mm			2,08			
Thickness of outer skin, mm			2,08			
Panel height,mm			120			
OD, m	0,0254	No tubes				
Wall, m	0,0016					
l, m^4	8,51E-09		1,20E-07	1,20E-07	1	
El	3,40E+03		4,89E+03	4,89E+03	143,	
Area, mm^2	239,3		499,2	499,2	NA	
Yield tensile strength, N	7,30E+04		1,07E+05	1,07E+05	146,	
UTS, N	8,73E+04		1,07E+05	1,07E+05	122,	
Yield tensile strength, N as welded	4,31E+04		1,07E+05	1,07E+05	248,	
UTS, N as welded	7,18E+04		1,07E+05	1,07E+05	149,	
Max load at mid span to give UTS for 1m long tube, N	1,96E+03		8,54E+03	8,54E+03	436,	
Max deflection at baseline load for 1m long tube, m	1,20E-02		8,33E-03	8,33E-03	69,	
Energy absorbed up to UTS, J	1,17E+01		1,55E+02	1,55E+02	1324,	
Perimeter shear, N (monocoques only)	4,45E+05	N/A	4,51E+05	4,51E+05	101,	

Front Bulkhead

Dopo aver compilato i vari campi con le dimensioni e le proprietà meccaniche dei materiali il foglio Excel ci fornisce come output i calcoli sui telai. Qualora il telaio monoscocca sia adeguato fornisce delle caselle verdi, in caso contrario rosse.

Al fine di determinare le proprietà meccaniche delle due soluzioni è opportuno calcolare il prodotto EI (ovvero Modulo di Young per momento d'inerzia baricentrico), che è direttamente proporzionale alla rigidezza flessionale.

Nel calcolare il momento d'inerzia del monoscocca facciamo l'ipotesi che lavorino solo le pelli e non il core; in realtà il core deve trasmettere taglio in modo da collegare le due lamine (deve quindi avere resistenza a taglio maggiore della colla che lo unisce alle pelli).

Calcolo il baricentro della sezione composta: $G_{tot} = \frac{\sum A_i \cdot G_i}{A_{tot}}$

Per calcolare il momento d'inerzia della singola lamina rispetto al baricentro globale: $I_G = I_i + A_i \cdot (G_i - G_{tot})^2$

Lo calcolo per tutti i 4 pannelli e li sommo a due a due per trovare i momenti d'inerzia dei due sandwitch aventi spessori diversi.

Ottengo quindi: $(EI)_{comp} = 2 \cdot (I_{G1,2} \cdot E_{1,2} + I_{G3,4} \cdot E_{3,4})$

Per quanto riguarda il tubo in acciaio vale: $(EI)_{acc} = 2 \cdot \frac{\pi \cdot (D_e^4 - D_i^4)}{64} \cdot E$

Confrontando i due valori deve essere che quello del telaio in monoscocca sia maggiore o uguale

Material Property	Baseline		Your Tube	Your Composite	Your Total		
EI	3,40E+03			4,89E+03	4,89E+03	143,7	

Un'altra verifica da fare è quella sul massimo momento flettente sopportato nei due casi.

Si vuole calcolare il carico concentrato in mezzeria che porta alla rottura di un tubo avente lunghezza un metro appoggiato alle estremità.

Le reazioni ai vincoli saranno uguali e pari alla metà della forza F, quindi il momento flettente massimo (che è in mezzeria) vale: $M_{f,max} = \frac{F}{2} \cdot \frac{L}{2}$

Vale che: $\sigma_{max} = \frac{M_{f,max}}{W} = UTS$, dove W è il modulo di resistenza.

Posso quindi sostituire: $\frac{F}{2} \cdot \frac{L}{2} = UTS \cdot W \rightarrow F = \frac{4 \cdot UTS \cdot W}{L}$

Material Property	Baseline	Your Tube	Your Composite	Your Total	
Max load at mid span to give UTS for 1m long tube, N	1,96E+03		8,54E+03	8,54E+03	436,3

Si può notare come il telaio in monoscocca sia decisamente più performante a flessione, questo è dovuto alla continuità di materiale che presenta questa soluzione.

Coerentemente ai risultati appena ottenuti si trova che la freccia dovuta alla prova sopra descritta è inferiore a quella del telaio a traliccio.

Material Property	Baseline	Your Tube	Your Composite	Your Total	
Max deflection at baseline load for 1m long tube, m	1,20E-02		8,33E-03	8,33E-03	69,6

Un'ulteriore verifica che va fatta è quella sulla massima energia assorbita alla rottura, che corrisponde all'area sottesa dalla curva dell'andamento della forza in funzione della deformazione.

Infine va verificata la resistenza a taglio; deve essere equivalente o migliore a quella di una piastra in acciaio di spessore 1,5 mm.

Come si può vedere questa prova risulta essere il collo di bottiglia, dimensioni e scelta dei materiali vanno fatte sulla base di questa prova.

ESERCITAZIONE AL MENTAT

Si plottano i 4 nodi per creare il quarto di pannello:

MESH GENERATION —> NODES — ADD e inserisco le seguenti coordinate:

(0, 0, 0) (250, 275/2, 0) (0, 275/2, 0) (250, 0, 0)

ver. 1

Quindi si uniscono i 4 nodi per formare il rettangolo attivando ELEMENT CLASS — QUAD 4, quindi:

ELEMENTS ADD -> seleziono i 4 nodi

A questo punto posso suddividere il rettangolo in più parti, sempre in MESH GENERATION: SUBDIVIDE --> DIVISIONS --> u=50 v=22 w=1 --> ELEMENTS ---> seleziono il rettangolo --> END LIST.

lab.27/4, p. 7/14

Si va a creare il core di 20 mm:

MESH GENERATION —> EXPAND —> TRANSLATION = 0, 0, 5 —> REPETITION = 4 quindi ELEMENTS —> seleziono il rettangolo —> END LIST Infine per crearlo come solido: PLOT —> ELEMENT —> attivo SOLID

Ora bisogna creare le pelli esterne:

MESH GENERATION —> CONVERT —> Convert FACES to ELEMENTS e si seleziona, posizionandosi come in figura, la faccia superiore e la faccia inferiore, quindi

MSC Software

END LIST.

Per creare il gruppo contenente le pelli si procede come segue, dalla schermata convert:

SELECT —> SELECT BY —> nella tendina ELEMENTS BY seleziono CLASS —> QUAD(4) —> OK. Quindi torno alla schermata precedente con RETURN e vedo ELEMENTS=2200. Seleziono STORE —> in STORE ELEMENTS IN NEW SET nomino "pelli" —> OK. Infine nella finestra ALL seleziono SELECT quindi END LIST.

Ora si procede definendo il core: per pulire dalla selezione precedente si seleziona CLR in modo da avere ELEMENTS=0, quindi:

SELECT -> SELECT BY -> ELEMENTS BY -> CLASS -> HEX(8) -> OK

Come in precedenza troverò selezionati 4400 ELEMENTS, quindi in STORE nomino "core" —> ALL: SELECT. Abbiamo così organizzato i materiali che vedo attivando IDENTIFY SETS.

OSS: Con il comando SWEEP —> ALL vado a collegare tutti gli elementi; in questo caso si va a eliminare 1177 nodi superflui.

Si definiscono le proprietà geometriche:

GEOMETRIC PROPERTIES -> NEW -> STRUCTURAL -> 3D -> SHELL

In GEOMETRIC PROPERTIES seleziono PROPERTIES —> THICKNESS = 1,04 poi seleziono SHELL OFFSET —> USE OFFSET —> OFFSET = 0,52 —> OK

Quindi ELEMENTS: ADD -> SET -> seleziono "pelli".

Infine in PLOT SETTINGS —> SHELL —> attivo PLOT EXPANDED e PLOT OFFSETS —> REDRAW.

Come si nota in figura le pelli risultano distaccate dal core proprio per l'offset applicato.

Ora si procede con le proprietà del materiale (MATERIAL PROPERTIES):

MATERIAL PROPERTIES —> NEW —> STANDARD —> name: "WF71". DATA CATEGORIES —> STRUCTURAL —> TYPE: ELASTIC-PLASTIC ISOTROPIC, YOUNG'S MODULUS = 105 e POISSON'S RATIO = 0,25 —> OK. ELEMENT —> ADD —> SET —> seleziono "core" quindi END LIST.

MATERIAL PROPERTIES —> NEW —> STANDARD —> name: "T700". DATA CATEGORIES —> STRUCTURAL —> TYPE: ELASTIC-PLASTIC ORTHOTROPIC quindi inserisco i valori in tabella:

E 1	60000	NU12	0,046	G1	3290
E2	60000	NU23	0,3	G23	3450
E3	8970	NU31	0,3	G31	3450

MATERIAL PROPERTIES —> NEW —> STANDARD —> name: "M30S". DATA CATEGORIES —> STRUCTURAL —> TYPE: ELASTIC-PLASTIC ORTHOTROPIC quindi inserisco i valori in tabella:

E1	150000	NU12	0,3	G1	3450
E2	8970	NU23	0,3	G23	3450
E3	8970	NU31	0,3	G31	3450

MATERIAL PROPERTIES —> NEW —> COMPOSITE—> name: "laminato standard".

DATA CATEGORIES —> GENERAL —> REFERENCE PLANE = 0 e attivo ABSOLUTE THICKNESS (selezionando RELATIVE) —> SINGLE LAYER —> APPEND e seleziono con questa sequenza i materiali definiti nei punti precedenti: T700 - M30S - M30S - T700. Poi inserisco i valori di spessori e angoli come in figura:

ERENCE	PLAN	ΝE	0							AVAILABLE MATERIALS	
IGLE LA YER RAN	AYER NGE		APPEND	INSERT	COPY COPY	REMOVE REMOVE	MATERIAL			T700 M30S	
AYERS		4				SETTINGS	VAUTO ID	ABSOLUTE T	HICKNESS	,	
NDEX			MATERIAL			THICKNESS		ANGLE (DEGREES)		
	ID	1	T700			THICKNESS	0.31	ANGLE	45		
	ID	2	M30S			THICKNESS	0.21	ANGLE	0		
	ID ID	3	M30S T700			THICKNESS	0.21	ANGLE	45		
						SUM	1.04				

Quindi con OK vedo il seguente risultato:

Infine assegno il materiale alle pelli, quindi ADD -> SET -> seleziono "pelli"

Si definiscono le orientazioni del materiale:

MAIN MENU —> MATERIAL PROPERTIES —> ORIENTATION —> NEW: seleziono ZX PLANE. ELEMENTS: ADD —> SET —> seleziono "pelli".

Infine in PLOT attivo WIREFRAME per gli ELEMENTS e vedo le direzioni come in figura:

Г	∑ < ×>	/ < // >	/ <×>	/ < // >	/	/	/	/	/ < // >	≪ MSCX Soft
	WF71									
	laminato_s	standard>		/ < ``	/ < ``	/ ~ ``	/ ~ ``		/ < `` >	/ < X>
	/ <``` >	/ ~ ``	/ < `` >	/ <`` >	/ >	/ 	/ ~ ``	/ < `` >	/ <x></x>	/ < X >
_										
_	/	/	/ < X>	/ < X>	/ < `` >	/ < `` >	/ <x></x>	/ < X>	/ < X>	/ ~ >>
	/	/ < X>		/ < X>	/ 	/ < X>	/ < X>	/ < //	/ < X>	/ <>
					Ĭ _ '					