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Chapter 1

Spatial beam structures
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1.1 Beam axis and cross section definition
A basic necessary condition for identifying a deformable body as a
beam – and hence applying the associated framework – is that its
centroidal curve be at least loosely recognizable.

Once such centroidal line has been roughly defined, locally perpen-
dicular planes may be derived whose intersection with the body itself
defines the local beam cross section.

Then, the 𝐺 center of gravity position may be computed for each
of the local cross sections, leading to a refined, potentially iterative
definition for the beam centroidal axis1.

A local cross-sectional reference system may be defined by aligning
the normal 𝑧 axis with the beam centroidal curve, and by employing,
as the first in-section axis, namely 𝑥, the projection of a given global
v vector, which is assumed not to be parallel to the beam axis.

The second in-section axis 𝑦 may be then derived, in order to obtain
a 𝐺𝑥𝑦𝑧 right-handed coordinate system, whose unit vectors are ̂𝚤, ̂𝚥, �̂�.

If a thin walled profile is considered in place of a solid cross sec-
tion member – i.e., the section wall midplane is recognizable too (see
paragraph XXX), then a curvilinear coordinate 0 ≤ 𝑠 ≤ 𝑙 may be de-
fined that spans the in-cross-section wall midplane, along with a local
through-wall-thickness coordinate −𝑡(𝑠)/2 ≤ 𝑟 ≤ +𝑡(𝑠)/2.

Such 𝑠, 𝑟, in-section coordinates based on the profile wall may be
employed in place of their cartesian 𝑥, 𝑦 counterparts, if favourable.

Beam axis may be discontinuous at sudden body geometry changes;
a rigid body connection is ideally assumed to restrict the relative mo-
tion of the proximal segments. Such rigid joint modeling may be ex-
tended to more complex 𝑛-way joints; if the joint finite stiffness is to
be taken into account, it has to be described through the entries of a
rank 6(𝑛 − 1) symmetric square matrix 2.

At joints or beam axis angular points the cylindrical bodies swept
by the cross sections do usually overlap, besides they only loosely mimic
the actual deformable body geometry; the results obtained through
the local application of the elementary beam theory may at most be

1Here, centroidal curve, centroidal line, centroidal axis, or simply beam axis are
treated as synonyms.

2i.e., joint stiffness is unfortunately not a scalar value.
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Figure 1.1: A beam structure.

employed to scale the triaxial local stress/strain fields3, which have to
be evaluated resorting to more complex modelings.

1.1.1 A worked example

See Figure 1.1.1. TODO.

1.2 Cross-sectional resultants for the spatial beam
At any point along the axis the beam may be notionally split, thus
obtaining two facing cross sections, whose interaction is limited to three
components of interfacial stresses, namely the axial normal stress 𝜎u�u�
and the two shear components 𝜏u�u�, 𝜏u�u�.

Three force resultant components may be defined by integration
along the cross section area, namely the normal force, the 𝑦- and the

3The peak stress values obtained through the elementary beam theory may be
profitably employed as nominal stresses within the stress concentration effect frame-
work.
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𝑥- oriented shear forces, respectively defined as

𝑁 = ∫
u�

𝜎u�u�𝑑𝒜

𝑆u� = ∫
u�

𝜏u�u�𝑑𝒜

𝑆u� = ∫
u�

𝜏u�u�𝑑𝒜

Three moment resultant components may be similarly defined, namely
the 𝑥- and 𝑦- oriented bending moments, and the torsional moment.
However, if the centroid is the preferred fulcrum for evaluating the
bending moments, the below discussed 𝐶 shear center is employed for
evaluating the torsional moment. We hence define

ℳu� = ∫
u�

𝜎u�u�𝑦𝑑𝒜

ℳu� = − ∫
u�

𝜎u�u�𝑥𝑑𝒜

ℳu� ≡ ℳu� = ∫
u�

[𝜏u�u�(𝑥 − 𝑥u�) − 𝜏u�u�(𝑦 − 𝑦u�)] 𝑑𝒜

The applied vector associated to the normal force component (𝐺, 𝑁�̂�)
is located at the section center of gravity , whereas the shear force
(𝐶, 𝑆u� ̂𝚤 + 𝑆u� ̂𝚥) is supposed to act at the shear center; such convention
decouples the energy contribution of force and moment components for
the straight beam.

Cross section resultants may be obtained, based on equilibrium for
a statically determinate structure. The ordinary procedure consists in

• notionally splitting the structure at the cross section whose re-
sultants are under scrutiny;

• isolating a portion of the structure that ends at the cut, whose
locally applied loads are all known; the structure has to be pre-
liminarily solved for the all the constraint reactions that act on
the isolated portion;

• setting the equilibrium equations for the isolated substructure,
according to which the cross-sectional resultants are in equilib-
rium with whole loading.
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1.3 Axial load and uniform bending
It is preliminarily noted that the elementary extensional-flexural solu-
tion is exact with respect to the Theory of Elasticity if the following
conditions hold:

• beam constant section;

• beam rectilinear axis;

• absence of locally applied loads;

• absence of shear resultants4 (i.e. constant bending moments);

• principal material directions of orthotropy are uniform along the
section, and one of them is aligned with the beam axis;

• the 𝜈31 and the 𝜈32 Poisson’s ratios5 are constant along the sec-
tion, where 3 means the principal direction of orthotropy aligned
with the axis. Please note that 𝐸u�𝜈u�u� = 𝐸u�𝜈u�u�, and hence
𝜈u�u� ≠ 𝜈u�u� for a generally orthotropic material.

Most of the above conditions are in fact violated in many textbook
structural calculations, thus suggesting that the elementary beam the-
ory is robust enough to be adapted to practical applications, i.e. limited
error is expected if some laxity is used in circumscribing its scope6.

The extensional-flexural solution is build on the basis of the follow-
ing simplifying assumptions:

• the in-plane7 stress components 𝜎u�, 𝜎u�, 𝜏u�u� are null;

• the out-of-plane shear stresses 𝜏u�u�, 𝜏u�u� are also null;

4A locally pure shear solution may be in fact superposed; such solution may
however not be available for a general cross section.

5We recall that u�u�u� is the Poisson’s ratio that corresponds to a contraction in
direction u�, being a unitary extension applied in direction u� in a manner that the
elastic body is subject to a uniaxial stress state.

6Measures for both the error and the violation have to be supplied first in order
to quantify the approximation.

7The in-plane and the out-of-plane expression refer to the cross sectional plane.
stress/strain component characterization both refer to the cross sectional plane, if
not otherwise specified
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• the axial elongation 𝜖u� linearly varies along the cross section,
namely

𝜖u� = 𝑎 + 𝑏𝑥 + 𝑐𝑦 (1.1)

or, equivalently8, each cross section is assumed to remain planar
in the deformed configuration.

The three general constants 𝑎, 𝑏 and 𝑐 have a physical counterpart;
in particular 𝑎 represents the axial elongation ̄𝜖 as measured at the
centroid9, 𝑐 equates the 1/𝜌u� curvature10 whereas 𝑏 equates −1/𝜌u�.

Figure 1.3 (c) justifies the equality relation 𝑐 = 1/𝜌u�; beam axial
fibers with a Δ𝑧 initial length are elongated by the curvature up to
a Δ𝜃 (𝜌u� + 𝑦) deformed length, where Δ𝜃𝜌u� equates Δ𝑧 based on the
length of the unextended fibre at the centroid. By evaluating the axial
strain value for such general fiber, it results 𝜖u� = 1/𝜌u� 𝑦.

In addition, Figure 1.3 (c) relates the 1/𝜌u� curvature with the dis-
placement component in the local 𝑦 direction, namely 𝑣, and with the
section rotation angle with respect to the local 𝑥 axis, namely 𝜃, thus
obtaining

𝑑𝜃
𝑑𝑧

= 1
𝜌u�

, 𝜃 = −𝑑𝑣
𝑑𝑧

, 𝑑2𝑣
𝑑𝑧2 = − 1

𝜌u�
(1.2)

With analogous considerations, see 1.3 (e), we may also obtain

𝑑𝜙
𝑑𝑧

= 1
𝜌u�

, 𝜙 = +𝑑𝑢
𝑑𝑧

, 𝑑2𝑢
𝑑𝑧2 = + 1

𝜌u�
(1.3)

where 𝜙 is the cross section rotation around the local 𝑦 axis, and 𝑢 is
the 𝑥 displacement component.

A uniaxial stress state is hence assumed, where the only nonzero
stress component may be determined as

𝜎u� = 𝐸u�𝜖u� = 𝐸u� ( ̄𝜖 − 1
𝜌u�

𝑥 + 1
𝜌u�

𝑦) (1.4)

8The axial, out-of-plane displacement Δu� = ∫
Δu�

u�u�u�u� = Δu� (u� + u�u� + u�u�) accu-
mulated in the between two cross sections with a Δu� initial distance, is consistent
with that of a relative rigid body motion.

9or, equivalently, the integral average of the elongation along the section.
10namely the inverse of the beam curvature radii as observed with a line of sight

aligned with the u� axis. Curvature is assumed positive if the u� section rotation with
respect to the u� axis grows with increasing u�, i.e. u�u�/u�u� > 0.
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Figure 1.2: A differential fibre elongation proportional to the 𝑦 coor-
dinate induces a curvature 1/𝜌u� on the normal plane with respect to
the 𝑥 axis. A differential fibre contraction proportional to the 𝑥 coor-
dinate induces a curvature 1/𝜌u� on the normal plane with respect to
the 𝑦 axis. The intermediate trapezoidal deformation modes (b) and
(e) clearly relate the differential elongation/contraction and the posi-
tive relative end rotation; they are however affected by spurious shear
deformation as evidenced by the skewed corner.
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Figure 1.3: Positive 𝑥 and 𝑦 bending moment components adopt the
same direction of the associated local axes at the beam segment end
showing an outward-oriented arclength coordinate axis; at beam seg-
ment ends characterized by an inward-oriented local 𝑧 axis, an opposite
sign convention holds for the bending moments.

Stress resultants may be easily evaluated based on Fig. 1.3 as

𝑁 = ∬
u�

𝐸u�(𝑥, 𝑦)𝜖u�𝑑𝐴 = 𝐸𝐴 ̄𝜖 (1.5)

ℳu� = ∬
u�

𝐸u�(𝑥, 𝑦)𝜖u�𝑦𝑑𝐴 = 𝐸𝐽u�u�
1

𝜌u�
− 𝐸𝐽u�u�

1
𝜌u�

(1.6)

ℳu� = − ∬
u�

𝐸u�(𝑥, 𝑦)𝜖u�𝑥𝑑𝐴 = −𝐸𝐽u�u�
1

𝜌u�
+ 𝐸𝐽u�u�

1
𝜌u�

(1.7)

where the combined material/cross-section stiffness moduli

𝐸𝐴 = ∬
u�

𝐸u�(𝑥, 𝑦) 𝑑𝐴 (1.8)

𝐸𝐽 ∗∗ = ∬
u�

𝐸u�(𝑥, 𝑦) ∗ ∗ 𝑑𝐴 (1.9)

may also be rationalized as the cross section area and moment of inertia
respectively, multiplied by a suitably weighted average axial Young
modulus. Those moduli reduce to their usual 𝐸u�𝐴, 𝐸u�𝐽∗∗ counterparts
if the material is homogeneous along the cross section.
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From Eqn. 1.5 we obtain

̄𝜖 = 𝑁
𝐸𝐴

, (1.10)

and by concurrently solving Eqns. 1.6 and 1.7 with respect to the 1/𝜌u�
and 1/𝜌u� curvatures, we obtain

1
𝜌u�

=
ℳu�𝐸𝐽u�u� + ℳu�𝐸𝐽u�u�

𝐸𝐽u�u�𝐸𝐽u�u� − 𝐸𝐽2
u�u�

(1.11)

1
𝜌u�

=
ℳu�𝐸𝐽u�u� + ℳu�𝐸𝐽u�u�

𝐸𝐽u�u�𝐸𝐽u�u� − 𝐸𝐽2
u�u�

(1.12)

Axial strain and stress components may then be obtained for points
along the section once recalled Eqn. 1.4.

Peak axial strain is obtained at points whose distance is extremal
with respect to the stretched section neutral axis; such neutral axis
may be graphically defined as follows:

• nonzero ̄𝜖 case: the neutral axis intersect the local axes (0, − ̄𝜖𝜌u�)
and ( ̄𝜖𝜌u�, 0) intercepts. A divergent intercept with respect to one
axis denotes parallelism;

• zero ̄𝜖 case: the neutral axis is centroidal and parametrically
defined by the 𝜆(𝜌u�, 𝜌u�) points, with arbitrary 𝜆

In both cases, the direction that is normal to the neutral axis is para-
metrically defined as 𝜆(−𝜌u�, 𝜌u�). Elongation increases with growing
𝜆. The cross section projection on such a line defines a segment whose
ends are extremal with respect to the axial strain.

1.4 Shear stresses due to the St. Venant tor-
sion

1.4.1 Closed section, thin walled beam

TODO.

1.4.2 Open section, thin walled beam

TODO.
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1.5 Stresses due to the shear cross section re-
sultants

1.5.1 A generalized application of the Jourawsky for-
mula

In the presence of nonzero shear resultants, the bending moment ex-
hibits linear variation with the axial coordinate 𝑧 in a straight beam.
Based on the beam segment equilibrium we have

𝑆u� = 𝑑ℳu�
𝑑𝑧

, 𝑆u� = −𝑑ℳu�
𝑑𝑧

(1.13)

In the case of constant section, Eqns. 1.11 and 1.12, XXX

1.5.2 Shear stresses in an open section, thin walled beam

TODO.

1.5.3 Shear stresses in an closed section, thin walled
beam

TODO.

1.6 Symmetry and skew-symmetry conditions
Symmetric and skew-symmetric loading conditions are mostly rele-
vant for linearly-behaving systems; a nonlinear system may develop
an asymmetric response to symmetric loading (e.g. column buckling).

Figure 1.6 collects symmetrical and skew-symmetrical pairs of vec-
tors and moment vectors (moments); those (generalized) vectors are
applied at symmetric points in space with respect to the reference
plane. Normal and parallel to the plane vectors are considered, that
may embody the same named components of a general vector.

The pair members may be moved towards the reference plane up
to a vanishing distance 𝜖; a point on the reference plane coincides with
its image. In the case different (in particular, opposite and nonzero)
field vectors are associated to the two coincident pair members, single
valuedness does not hold at the reference plane; such condition deserves

10
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Figure 1.4: An overview of symmetrical and skew-symmetrical (gener-
alized) loading and displacements.
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Figure 1.5: The doweled sphere - slotted cylinder joint, which is asso-
ciated to the skew-symmetry constraint. In this particular application,
the cylindrical guide may be considered as grounded.

an attentive rationalization whenever a physical field (displacement
field, applied force field, etc.) is to be represented.

Those vector and moment pairs may represent generalized forces
(both internal and external) and displacements.

The ∗ (generalized) displacement components may induce material
discontinuity at points laying on the [skew-]symmetry plane, if nonzero.
They have to be constrained to zero value at those points, thus intro-
ducing [skew-]symmetry constraints.

These constraints act in place of the portion of the structure that is
omitted from our model, since the results for the whole structure may
be derived from the modeled portion alone, due to [skew-]symmetry.

In case of symmetry, a constraint equivalent to a planar joint is
to be applied at points laying on the symmetry plane for ensuring
displacement/rotation continuity between the modeled portion of the
structure, and its image. In case of skew-symmetry, a constraint equiv-
alent to a doweled sphere - slotted cylinder joint (see Figure ??), where
the guide axis is orthogonal to the skew-symmetry plane, is applied at
the points belonging to the intersection between the deformable body
and the plane.

The ⋄ internal action components are null at points pertaining
to the [skew-]symmetry plane, since they would otherwise violate the
action-reaction law. The complementary † internal action components
are generally nonzero at the [skew-]symmetry plate.

The † external action components are not allowed at points along

12
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the [skew-]symmetry plane; instead, the complementary ⋄ generalized
force components are allowed, if they are due to external actions.

In the case of a symmetric structure, generally asymmetric applied
loads may be decomposed in a symmetric part and in a skew-symmetric
part; the problem may be solved by employing a half structure model
for both the loadcases; the results may finally be superposed since the
system is assumed linear.

1.7 Periodicity conditions
TODO, if needed.

1.8 Castigliano’s second theorem and its appli-
cations

Castigliano’s second theorem may be employed for calculating deflec-
tions and rotations, and it states:

If the strain energy of an elastic structure can be expressed
as a function of generalised loads 𝑄u� (namely, forces or
moments) then the partial derivative of the strain energy
with respect to generalised forces supplies the generalised
displacement 𝑞u� (namely displacements and rotations with
respect to which the generalized forces work).

In equation form,
𝑞u� = 𝜕𝑈

𝜕𝑄u�

where 𝑈 is the strain energy.

1.9 Internal energy for the spatial straight beam
The linear density of the elastic potential (alternatively named internal)
energy for the spatial rectilinear beam may be derived as a function of
its cross section resultants, namely

13
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𝑑𝑈
𝑑𝑙

=
𝐽u�u�𝑀2

u� + 𝐽u�u�𝑀2
u� + 2𝐽u�u�𝑀u�𝑀u�

2𝐸 (𝐽u�u�𝐽u�u� − 𝐽2
u�u�)

+ 𝑁2

2𝐸𝐴
(1.14)

+
𝜒u�𝑆2

u� + 𝜒u�𝑆2
u� + 𝜒u�u�𝑆u�𝑆u�

2𝐺𝐴
+ 𝑀2

u�
2𝐺𝐾u�

(1.15)

where

• 𝐴, 𝐽u�u�, 𝐽u�u� and 𝐽u�u� are the section area and moments of inertia,
respectively;

• 𝐾u� is the section torsional stiffness (not generally equivalent to
its polar moment of inertia);

• 𝐸 and 𝐺 are the material Young Modulus and Shear Modulus,
respectively; the material is assumed homogeneous, isotropic and
linearly elastic.

The shear energy normalized coefficients 𝜒u�,𝜒u�,𝜒u�u� are specific to
the cross section geometry, and may be collected from the expression
of the actual shear strain energy due to concurrent action of the 𝑆u�, 𝑆u�
shear forces.

In cases of elastically nonlinear structures, the second Castigliano
theorem may still be employed provided that the complementary elas-
tic strain energy 𝑈 ∗ is employed in place of its classical counterpart,
see Fig. 1.9. The two energy terms are equal for linearly behaving
structures.
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Figure 1.6: A nonlinearly elastic (namely stiffening) structure; the
bending moment diagram is evaluated based on the beam portion
equilibrium in its deformed configuration. The complementary elas-
tic strain energy 𝑈 ∗ is plotted for a given applied load ̄𝑓 or assumed
displacement ̄𝛿, alongside the elastic strain energy 𝑈 .
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