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0.1 Basic formulation for plates and shells

0.1.1 Some assumptions for the kinematic model of the
plate

A necessary condition for applying the plate/shell model framework
to a deformable body is that a geometrical midsurface might be, if
only loosely, recognized for such a body. Then, an iterative refinement
procedure1 may be applied to such tentative midsurface guess.

Then, material should be observed as [piecewise-]homogeneous, or
slowly varying in mechanical properties while moving at a fixed distance
from the midsurface.

Of the two outer surfaces, one has to be defined as the upper or top
surface, whereas the other is named lower ot bottom, thus implicitly
orienting the midsurface normal towards the top.

Finally, the body should result fully determined based on a) its
midsurface, b) its pointwise thickness, and c) the through-thickness
(tt) distribution of the constituent materials.

The geometrical midsurface is of little significance if the material
distribution is not symmetric2; such midsurface, in fact, exhibits no rel-
evant properties in general. Its definition is nevertheless pretty straigh-
forward.

In the present treatise, a more general reference surface definition is
preferred to its median geometric counterpart; in particular, an offset
term o is considered that pointwisely shifts the geometric midsurface
with respect to the reference surface. A positive offset shifts the mid-
surface towards the top.

With the introduction of the offset term, the reference surface may
be arbitrarily positioned with respect to the body itself; as an example,
an offset set equal to plus or minus half the thickness makes the refer-
ence surface correspondent to the bottom or top surfaces, respectively.

Such offset term becomes fundamental in the Finite Element (FE)
shell implementation, where, in fact, the reference plane is uniquely

1Normal segments may be cast from each point along the midsurface, that end
on the outer body surfaces. The midpoint locus of these segments redefines the
midsurface itself.

2If the unsimmetric laminate is composed by isotropic layers, a reference plane
may be obtained for which the B membrane-to-bending coupling matrix vanishes;
a similar condition may not be verified in the presence of orthotropic layers.
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defined by the position of the nodes, whereas the offset arbitrarily
shifts the geometrical midsurface.

In the case of limited3 curvatures, and for considerations whose
scope is local, the tangent reference plane may be employed in place of
the possibly curve reference surface, thus locally reducing the general
shell treatise to its planar, plate counterpart.

Figure 1 shows the basic kinematic relations for the shear deformable
(Mindlin) plate model; in the undeformed configuration, P is a generic
material point along the plate thickness, and Q is its normal projection
on the reference plane. Such Q point is named reference point for the
tt normal segment it belongs to.

A local reference system is defined, whose third axis z is normal
to the undeformed midsurface; the first in-plane (ip) x axis may be
arbitrarily oriented, e.g. by projecting a global v̂ unit vector, and the
remaining y axis may be construed such that it finalizes the right xyz
triad.

Then, the deformed configuration is considered, and the motion
of both the points is monitored according to two mutually orthogonal
views.

The P displacement components (uP, vP, wP) may be defined as
a function of the motion of its reference point Q, described in terms
of its displacement components (u, v, w), plus the two θ, φ rotation
components with respect to the x, y ip local axes, respectively. Those
angular displacements are defined with respect to the normal segment
orientation, as measured on the orthogonally projected views. After
some cumbersome trigonometric manipulations4 we obtain

uP = u+ z (1 + ε̌z)
cos θ√

1− sin2 φ sin2 θ
sinφ

vP = v − z (1 + ε̌z)
cosφ√

1− sin2 φ sin2 θ
sin θ

wP = w + z

(
(1 + ε̌z)

cosφ cos θ√
1− sin2 φ sin2 θ

− 1

)
,

3with respect to thickness
4in which it may happen to miss some higher order terms, as the author persis-

tently did in previous versions of the present notes
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Figure 1: Relevant dimensions for describing the deformable plate kine-
matics. Here, two a, b factors are introduced which reduce to unity for
small rotations and strain.
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where z (1 + ε̌z) is the length of the PQ segment on the deformed con-
figuration, which is further scaled by the fractional factors due to pro-
jection along Fig. 1 views.

The ε̌z average z strain term is defined based on the accumulation
of the Poisson shrinkage (or elongation) along the PQ segment, i.e.

ε̌z(z) =
1

z

∫ z

0
εzdς

=
1

z

∫ z

0
− ν

1− ν
(εx + εy) dς,

the second expression holding in the case of isotropic materials only.
The stress component σz which is normal to the reference surface is

in fact assumed to be either zero or negligible. Being a full discussion5

of such a plane stress assumption beyond the scope of the present
contribution (bspc), we limit our treatise to the observation that, in
the inevitably anecdotal case of Fig. 2, the ratio between the oop
σz stress component and its ip counterparts varies with the square
of the ratio between the thickness and an in plane significant length.
The engineering relevance of such a normal stress component rapidly
vanishes with increasing plate thinness. The Fig. 2 examples also
points out the intermediate magnitude decay of the oop shear stresses,
whose normalized form linearly varies with the same thinness ratio.

Such displacement components may be linarized with respect to i)
the small rotations and ii) small εz strain hypotheses, thus obtaining
the following expressions

uP = u+ zφ (1)

vP = v − zθ (2)

wP = w. (3)

5Such assumption is coherent with the free surface conditions at the top and
the bottom skins, and with the moderate thickness of the elastic body, that allows
only a narrow deviation from the boundary values. In fact, the equilibrium of a
partitioned, tt material segment requires that

σz(z) = −
∫ z

−h/2+o

∂τzx
∂x

+
∂τyz
∂y

dz = +

∫ +h/2−o

z

∂τzx
∂x

+
∂τyz
∂y

dz,

where τzx, τyz are the interlaminar, oop shear stress components, whose ip gradient
is limited.
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Figure 2: Normalized stress component magnitude in the case of a
simply supported circular plate subject to normal pressure, according
to the spatial theory of elasticity framework, see [1, p.349]. A ho-
mogeneous and isotropically elastic circular plate of diameter d and
thickness h is simply supported along its perimeter (i.e. apart from
the their transverse component, displacements are free, and so are ro-
tations), and it is loaded by a unit pressure at its upper surface. The
peak magnitude of the transverse stress σz is observed at the pressur-
ized surface, and it equates the pressure value. The oop shear stress
τzr is maximal along the perimeter, and it equates 3

8

(
d
h

)
. The two

equal ip direct stress components σr = σθ reach the peak value of
3(ν+3)

32

(
d
h

)2
+ ν+2

20 in correspondence of the plate center, at the surface;
its thin plate counterpart, σref , which lacks the second term, is taken as
the normalizing stress value. The remaining τrθ, τθz stress components
are zero due to axisymmetry. The commonwise ν = 0.3 Poisson ratio
value is used in tracing the Figure.
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A treatise of the large rotation and/or large strain nonlinear case
is, again, bspc.

According to such linearized expression, the kinematics of the P
points originally6 laying on a tt segment that is normal at Q to the
reference surface may be described as that of a rigid body.

The intrinsic shear related warping is either negated or neglected,
along with any sliding motion of the P points along the segment7.

Also, the behaviour of such a segment is coherent with its rigid
body modeling from the external loads point of view; in particular the
external actions act on the plate deformable body only through their
tt resultants, and no stress/strain components, or work, are associated
by the shell framework to wall squeezing actions, e.g. laminations.

We thus observe that, according to the shell framework, the follow-
ing external actions are not distinguishable: i) a q pressure applied at
the upper surface, ii) a −q traction applied at the lower surface, iii) a
q differential pressure between the outer surfaces, with p + q applied
at the top, and a generic p applied at the bottom, and iv) a trans-
verse inertial force whose area density is q, namely due to a oppositely
oriented q

ρh acceleration, where ρ is the material density. Also, a fp,
friction induced, x-oriented shear action at the upper surface is not dis-
tinguishable from an analogous distributed force for unit area applied
at the reference surface, plus a y-oriented distributed moment per unit
area, whose magnitude is fp(h/2 + o).

By observing the deformed configurations in Fig. 1, the normal

displacement
(
∂w
∂x ,

∂w
∂y

)
gradient – i.e. the gained slope of the deformed

reference surface, with respect to its original orientation – is made
up of two terms, namely the rotation of the normal segment, which
originates from the accumulation of the flexural curvature, and the
shear compliance, which resembles the transverse slippage typical of a
card deck. The following expressions are derived

6i.e. in the undeformed configuration
7The elision of higher order terms renders the laminate kinematically – but not

elastically – indistinguishable from its counterpart that might derive from a plane
strain assumption.
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∂w

∂x
= γ̄zx − φ (4)

∂w

∂y
= γ̄yz + θ (5)

in which the bar notation employed for the oop shear components
emphasizes their tt average nature.

0.1.2 Local and generalized strains

The ip strain components may hence be derived at the P point through
differentiation, and in particular we have

εx =
∂uP
∂x

=
∂u

∂x
+ z

∂φ

∂x
(6)

εy =
∂vP
∂y

=
∂v

∂y
− z ∂θ

∂y
(7)

γxy =
∂uP
∂y

+
∂vP
∂x

(8)

=

(
∂u

∂y
+
∂v

∂x

)
+ z

(
+
∂φ

∂y
− ∂θ

∂x

)
(9)

It clearly appears from the expressions above that the pointwise
strain values are due to the sum of i) the strain components as observed
at the reference plane,

e =

 ∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

 =

 ε̄x
ε̄y
γ̄xy

 ≡ εQ (10)

which are named membrane strains8 in the customary case in which
the material is symmetric9 with respect to the reference plane, plus ii)
terms that linearly scale with the z distance from such a plane, whose

8 e is an alternative symbol for the more natural, and previously employed ε̄ ,
whose double barred appearance is however terrible.

9or, more generally, elastically balanced

7



i
i

“master” — 2020/5/1 — 21:34 — page 8 — #8 i
i

i
i

i
i

coefficients

κ =

 +∂φ
∂x

−∂θ
∂y

+∂φ
∂y −

∂θ
∂x

 =

 κx
κy
κxy

 (11)

are named curvatures.10 The strains at the reference surface, and the
curvatures constitute the set of plate [shell] generalized strain compo-
nents, which are e.g. usually returned by Finite Element (fe) solvers;
those components allow for the following compact representation of the
ip strains at P

ε P ≡ ε = e + z κ . (12)

It worth to be stressed that the kinematic assumptions for the plate
model impose a linear tt profile for each single ip strain component;
those components may hence be sampled at the outer surfaces alone,
without loss of information. It is here anticipated that an analogous
behaviour is proper of the ip stress components if and only if (iif) the
material is elastically homogeneous along the thickness .

The two κx and κy curvatures equate to the inverse of the nor-
mal curvature radii, as probed along the respective local directions;
those curvatures are positive if the upper plate fibers are stretched,
or, equivalently, if the reference surface acquires convexity if observed
from above – i.e. from a point on the positive z axis.

Figure 3 clarifies the nature of the mixed curvature term κxy, which
is e.g. typical of open thin walled members – and flat plates as a
particular case – subject to torsion11.

10Please note that in the case of shells, the bare curvature name may be confusing,
since it might refer to either

• the initial, original, geometric, undeformed curvature, which is proper of the
shell before the application of some external loads, or to the

• strain, strain-induced, elastic[-plastic], bending, flexural curvature, or curva-
ture change, which consist in the variation of the thin wall curvature due to
the effect of the applied loads.

Except for [locally] flat panels, the author suggests to always specify which kind of
curvature we refer to. Here, curvature is used with reference to curvature change.

11the torsional curvature denomination for the κxy term, that the present author
has widely employed in the past, is not so proper nor widespread, so it might be
better avoided. Flexure and torsion are in fact not as uncoupled in the plate realm
as they are in beam theory, and flexure might be conveniently employed as an

8
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(b)

(c) (d)

(a)

x

y

θ
φ

Figure 3: Positive κxy mixed curvature for the plate element. The
grayscale coloring is proportional to the normal displacement w, which
spans from an extremal downward deflection (black), to an equal in
modulus extremal upward deflection (white). The gray level at the
centroid is associated to zero. Subfigure (a) shows the positive γxy shear
strain at the upper surface, the ip undeformed midsurface, and the
negative γxy at the lower surface; the point of sight related to subfigures
(b) to (d) are also evidenced. θ and φ rotation components decrease
with x and increase with y, respectively, thus leading to positive κxy
contributions. As shown in subfigures (c) and (d), the mixed curvature
of subfigure (b) evolves into two anticlastic bending curvatures if the
reference system is aligned with the square plate element diagonals,
and hence rotated by 45◦ with respect to z.
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0.1.3 Stresses, and their through-thickness resultants

The ip stress components at P are derived from strains by referring to
the material elastic constants, and to the plane stress hypothesis. We
hence have  σx

σy
τxy

 = σ = D ε = D e + zD κ , (13)

where D embodies the material constitutive law which elastically re-
lates to ip stress/strain components, and which is derived according to
the plane stress hypothesis.

In the particular case of an isotropic material – the generally or-
thotropic case is treated below – such a matrix takes the form

D =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 , (14)

whereas the normal component of strain, which is due to the Poisson
shrinkage alone, may be evaluated as

εz = − ν

1− ν
(εx + εy) . (15)

The attentive reader may observe that no mention is made to the
oop shear stresses, to which a paragraph is devoted below.

Moreover, the absence of transverse shear terms in current para-
graph formulation, and in particular in Eq. 13, hints for the ip and the
oop stress/strain components to be elastically uncoupled; the material
has evidently been implicitly assumed as monoclinic with respect to the
reference surface. Such a condition holds e.g. for isotropic materials,
and for the orthotropic plies usually employed in laminates.

As in the classical theory of beams, stress components are inte-
grated along the relevant unit of analysis, namely the cross section
there, and the normal segment here, to obtain suitable internal action
resultants.

umbrella term that also encompass profile (open and thin) wall deformation due to
pure torsion.

10
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Figure 4: XXX

According to the thin plate framework, stress resultants take the
form of forces per unit length along the surface, and they may be
expressed as

q =

 qx
qy
qxy

 =

∫
h
σ dz

=

∫
h

D dz︸ ︷︷ ︸
A

e +

∫
h

D zdz︸ ︷︷ ︸
B

κ (16)

in the case of the ip components, whereas for the oop components we
have

qxz =

∫
h
τzxdz qyz =

∫
h
τyzdz. (17)

Those quantities may be interpreted with respect to their (doubled if
single) subscripts as follows: qab is the b component of internal ac-
tion that is transmitted through a tt imaginary gate, whose in plane
width is unit and whose normal is oriented along a. According to this
rationalization, the q components are also called stress flows.

Besides the internal action resultants of the force kind, by weighting
the stress component contribution based on their z lever arm we obtain

11
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the moment stress resultants (or moment flows), whose expressions
follow

m =

 mx

my

mxy

 =

∫
h
σ zdz

=

∫
h

D zdz︸ ︷︷ ︸
B≡B T

e +

∫
h

D z2dz︸ ︷︷ ︸
C

κ . (18)

A selection of internal action components is represented in Fig. 4
shows, along with the stress distributions they arise from.

0.1.4 Constitutive equations for the plate

By employing the matrices defined in Eqs. 16 and 18, the cumulative
generalized strain - stress resultants relations for the plate (or for the
laminate) may be summarized in the following expressions[

q

m

]
=

[
A B

B T C

] [
e
κ

]
(19)

which are usually referred to as the constitutive equations of the [lam-
inate] plate, and the coefficient matrix, named constitutive matrix for
the laminate, summarizes the elastic response of the latter.

The contribution of the ip stress/strain components to the elastic
strain energy area density12 is defined based on the previous relation
as

υ† =
1

2

[
q

m

]> [
e
κ

]
(20)

=
1

2

[
e
κ

]> [
A B

B T C

] [
e
κ

]
. (21)

The A and the C minors of the constitutive matrix characterize
the plate stiffness with respect to membrane and flexural load case
families respectively; the membrane/flexural coupling stiffness minor

12i.e. strain energy per unit reference surface area

12
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B , which is in general nonzero, vanishes if the material is symmetrically
distributed with respect to the reference surface.

In the commonwise case of tt homogeneous material, and null off-
set13 we have

A = hD B = 0 C =
h3

12
D ,

i.e. the membrane stiffness varies linearly with the wall thickness,
the flexural stiffness varies with the cube of the thickness, and the
membrane and the flexural loadings are mutually uncoupled. Such a
laminate elastic properties dependence on thickness essentially holds
also for laminates, if the tt distribution of the various materials is
kept comparable.

0.1.5 The transverse shear stress/strain components

A full treatise on the title topic is, due to its complexity, bspc; starting
points for further investigation my be found in [2], [3] or in the theory
manual of your favourite fe solver.

The two γ̄yz and γ̄zx transverse shear components are in fact more

directly recognizable as further contributions to the
(
∂w
∂x ,

∂w
∂y

)
normal

deflection gradient, with respect to what is attributable to flexure
alone, than tt averages of actual, pointwise shear strains – see e.g.
Figure 1.

Also, the two qxz, qyz stress flow components defined in Eq. 17
are recognized to perform work14 on the same γ̄yz and γ̄zx transverse
shear components, respectively; the transverse shear contribution to
the elastic strain energy per unit ref. surface area is hence

υ‡ =
1

2
qxzγ̄xz +

1

2
qyzγ̄yz. (22)

The constitutive equation for the transverse shear is set at normal
segment (vs. punctual) level, with the declared aim of collecting the

13In the presence of a nonzero offset between the reference and the median planes,
the uncoupled nature of the plate membrane/flexural loadings is only formally lost.
If the same problem is considered based on a median reference plane, in fact, such
a property is obviously restored.

14in particular, work for unit reference surface area

13
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elastic strain energy contributions along the thickness, and they are
usually formulated as

υ‡ =
1

2

[
γ̄xz
γ̄yz

]>
χ

∫
h

G dz︸ ︷︷ ︸
Γ

[
γ̄xz
γ̄yz

]
, (23)

where G is the pointwise constitutive matrix for the transverse shear
components15 – which is considered through its tt integral, χ is a shear
correction factor – which accommodates for possibly any incongruence
in the formulation, and Γ is an emended transverse shear constitutive
matrix for the whole plate. By comparing Eqns. 22 and 23 we also
derive the de facto transverse shear constitutive relation[

qxz
qyz

]
= Γ

[
γ̄xz
γ̄yz

]
. (24)

for the Mindlin shear deformable plate.
In the case of isotropic materials, G is a diagonal matrix whose

terms equate the shear modulus, i.e.

G =
E

2 (1 + ν)

[
1 0
0 1

]
,

whereas the χ shear correction factor is usually assumed as 5
6 if the

material is tt uniform16; different χ values are however proposed in
literature, see e.g. [4], along with different procedures17 for evaluating
Γ .

In the case pointwise values are requested for the τzx and τyz stress
components – e.g. in the analysis of interlaminar stresses in composite
laminates, those quantities are derived from the assumed absence of

15 G is the 2 by 2 matrix s.t.

[
τzx
τyz

]
= G

[
γzx
γyz

]
.

16please note the parallel with the inverse 1.2 correction factor for the shear
contribution to the beam elastic strain energy, proper of the solid rectangular cross
section.

17we report as an example the notable case of of honeycomb panels – whose
transverse shear compliance is rarely negligible, in which Γ is defined as the G foam

transverse shear constitutive matrix for the foam/honeycomb material interposed
between the outer skins, multiplied by the overall panel thickness h; in this case the
χ transverse shear correction factor is implicitly defined as unity.

14
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shear stresses on the lower surface, and by accumulating the ip stress
component contributions to the x and y translational equilibria up to
the desired z sampling height. We hence obtain

τzx(z) = −
∫ z

−h
2

+o

∂σx
∂x

+
∂τxy
∂y

dz (25)

τyz(z) = −
∫ z

−h
2

+o

∂τxy
∂x

+
∂σy
∂y

dz. (26)

The parallel is evident with the Jourawsky theory of shear for beams.

0.1.6 Hooke’s law for the orthotropic lamina

Hooke’s law for the orthotropic material ip stress conditions, with re-
spect to principal axes of orthotropy;

D 123 =

 E1
1−ν12ν21

ν21E1
1−ν12ν21 0

ν12E2
1−ν12ν21

E2
1−ν12ν21 0

0 0 G12

 (27)

 σ1

σ2

τ12

 = T 1

 σx
σy
τxy

  ε1
ε2
γ12

 = T 2

 εx
εy
γxy

 (28)

where

T 1 =

 m2 n2 2mn
n2 m2 −2mn
−mn mn m2 − n2

 (29)

T 2 =

 m2 n2 mn
n2 m2 −mn
−2mn 2mn m2 − n2

 (30)

α is the angle between 1 and x;

m = cos(α) n = sin(α) (31)

The inverse transformations may be obtained based on the relations

T−1
1 (+α) = T 1(−α) T−1

2 (+α) = T 2(−α) (32)

15
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Finally

σ = D ε D ≡ D xyz = T−1
1 D 123 T 2 (33)

With regard to the transverse shear constitutive relation, in the
case of an orthotropic material whose oop shear moduli are Gz1 and
G2z we have

G =

[
n2Gz1 +m2G2z mnGz1 −mnG2z

mnGz1 −mnG2z m2Gz1 + n2G2z

]
.

0.1.7 An application: the four point bending test speci-
men.

The case of the four point bending test is considered, see Figure 5a,
with an isotropic and homogeneous specimen material. Specimen di-
mensions are defined as in Figure, where the b the specimen width is
taken as the relevant unit of length.

The width to length ratio of the specimen is less than unity, but far
from being negligible; a treatise according to the plate theory would
hence be more appropriate than the beam model which is usually pro-
posed by normative.

Such a test is based on the assumption that the bending moment –
a beam framework quantity – is constant along the gauge length, and
equal to Fl; such a quantity equates the through-width (tw) integral
of the mx moment resultant, whose value is assumed tw constant and
equal to m∗x = Fl/b. The specimen curvature along the gauge length
is

k∗x =
12Fl

Ebh3
(34)

according to the beam theory; such a value taken as a reference.
The treatise according to the plate theory is far less straightfor-

ward that its trivial beam counterpart, since e.g. we may consider the
two opposite extremal cases of i) unconstrained anticlastic secondary
curvature, or, equivalently, null my transverse (in the sense of tw, not
tt) moment resultant, and ii) cylindrical bending, i.e. null transverse
κy curvature. The membrane generalized stress/strain components are
zero, as the transverse shear terms along the gauge length. The mixed
moment resultant and curvature are zero in both the cases, since they
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are null at the xz symmetry plane, and they are assumed tw con-
stant. By applying the costitutive relations proper of the homogeneous,
isotropic plates, we derive for the unconstrained anticlastic curvature
case i)

mx = m∗x my = 0 κx = k∗x κy = −νk∗x,

whereas for the cylindrical bending case ii) we have

mx = m∗x my = νm∗x κx =
(
1− ν2

)
k∗x κy = 0.

We then observe that the nonzero κy transverse curvature predicted
by i) is inconsistent with the hypothesis of a full width line contact at
the supports, whose cylindrical surface is transversely flat; the uncon-
strained anticlastic curvature confines the specimen contact interac-
tion with the inner supports to a point in correspondence of the width
midspan, whereas the outer supports touch the specimen at its edges
only. Such a tw inhomogeneous loading condition induces contact
actions which may effectively oppose the anticlastic curvature, which
locally appears not “unconstrained” anymore.

On the other hand, a my moment resultant which is predicted ac-
cording to cylindrical bending not to vanish at the specimen flanks is
incompatible with the free surface boundary condition; continuity con-
ditions requires in fact that a distributed moment external action is
applied at the specimen flanks, which apparently is not the case.

The actual response of the specimen in terms of moment resultants
and curvatures, as probed at its centroidal axis, is plotted in Fig. 5b
in the case of bilateral support condition, i.e. w = 0 and w = d at
the outer and inner indenters, respectively, being d displacement of the
inner, moving, support. The cylindrical bending solution ii) is observed
at the supports, whereas a progressive transition to the unconstrained
anticlastic curvature solution i) is observed while moving away from
those supported areas. In particular, the central portion of the gauge
length behaves consistently with i).

In Fig. 5c, the same quantities are reported in the actual case
of unilateral contact at supports, i.e. the Signorini conditions18 are

18Those conditions consist in turn in a no compenetration inequality 35, in a no
tractive contact action inequality 36, and in the mutual local exclusion of nozero
gap and nonzero contact force, 37.
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imposed which consist in

g(y) ≥ 0 (35)

f(y) ≥ 0 (36)

g(y) · f(y) = 0, (37)

where f(y) is the lineic contact force along the width, positive if com-
pressive, and g(y) is the gap between specimen and indenter, namely
g(y) = −w(y) and g(y) = w(y) − d at the outer and inner supports,
respectively.

According to this second model, supports are less effective in locally
imposing a null secondary curvature, thus extending the validity of the
unconstrained anticlastic curvature solution i) to most of the gauge
length.

0.1.8 Final Notes.

A few sparse notes:

• If the unsymmetric laminate is composed by isotropic layers, a
reference plane may be obtained for which the B membrane-to-
bending coupling matrix vanishes; a similar condition may not
be verified in the presence of orthotropic layers.

• Thermally induced distortion is not self-compensated in an un-
symmetric laminate even if the temperature is held constant
through the thickness. Such fact, united to the unavoidable ther-
mal cycles that occurs in manufacturing if not in operation, makes
such configurations pretty undesirable.
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Figure 5: The not-so-trivial four point bending case, where b is the
specimen out-of-sketch-plane width (we might call it depth). Moment
fluxes and curvatures are sampled at the specimen midwidth, whereas
they may vary while moving towards the flanks; the average value of
mx along the width must in fact coincide with m∗x in correspondence
with the load span.
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