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Figure 1: A rollbar-like frame; Figures a) and b) collect the consid-
ered in-plane and out-of-plane actions, respectively, which are split for
added readability.

0.1 A semi-worked example: a rollbar-like frame

Let’s considered the plane frame structure depicted in Fig. 1, represent-
ing a simplified rollbar; a thin-walled, circular steel profile is employed
for both the upright and the cross members, whose median diameter
and thickness are d and t, respectively 1.

A global (E, xyz) reference system is employed2 to represent the
frame nodal coordinates, if required, and the constraint reaction com-
ponents.

A local reference system (G, 123) is set along the beam segments,
whose third axis follows the beam branch orientation, and whose first
axis is everywhere aligned with the global z direction.

The rollbar frame is clamped at both the A and E ends, and it is

1The present treatise is applicable to a generic material and cross section, pro-
vided that symmetry holds with respect to the plane the frame lies on; such further
condition may be overcome coupling terms are considered between the otherwise
uncoupled in-plane to out-of-plane problems.

2sorry for its unusual orientation, it has been inherited from some legacy lecture
notes of mine.
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loaded i) by a lateral force P , and ii) by a transverse force H, both
applied at node C.

Expected results of the analysis are i) the internal action com-
ponents at each frame node, and wherever they are maximal ii) the
constraint reactions at the A and E clamps, iii) the lateral, inward3

deflections ũB, ũC at B and C, respectively, and iv) the transverse4

deflections w̃C, w̃D at both C and D.
The second Castigliano theorem is resorted to for deflection cal-

culation, thus requiring the application of auxiliary, fictitious external
forces F and I, that may perform work with the monitored deflection,
if not already set (see the H force).

The structure is six times statically indeterminate; the clamp at A
is removed, and the associated six components of constraint reaction,
see Fig. 1, are set as further, parametrically defined external loads;
a statically determinate principal stucture is hence obtained, which
preserves the clamp at E as its only connection to ground.

The actual value of those parametrically defined loads is obtained
by imposing a null deflection along each of the six d.o.f.s at node A, and
thus casting a linear (due to the assumed structure behaviour) system
of six equations in the aforementioned six unknown parameters. Again,
the second Castigliano theorem is employed in evaluating the node A
generalized displacements.

The expression of the structure internal strain energy, namely

U (P, F,XA, YA,ΨA, H, I, ZA,ΘA,ΦA)

is obtained as a function of the applied loads through the integration
along the structure beam branches of the lineic strain energy density,
which in turn depends on the pointwise value of the internal action
components, see Eq. ??.

Due to the symmetric nature of the structure under scrutiny, and
to is assumed linear behavior, the overall problem may be partitioned
into two uncoupled symmetric (or in-plane) and skew-symmetric(or
out-of-plane) subproblems, that might be solved separately.

In order to streamline the treatise, the contribution alone is consid-
ered of the moment kind of stress resultants, thus neglecting the profile

3i.e. counter-oriented with respect to the x global axis
4i.e., oriented along the negative global z direction
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compliance with respect to axial and shear internal actions; such cus-
tomary approximation - consistent with an inextensible Euler beam
model - is justified by the supposed profile slenderness.

Figure 2 collects the contribution of each the in-plane external ac-
tions to the M1 bending moment, plotted along the beam flank in
tension. Such bending moment diagrams are obtained by considering
the equilibrium of the portion of principal structure that spans from
the A free end to each section which in turn is under scrutiny; please
try to derive those diagrams on your own, since they might hide some
errors.

We also notice that, consistently with the local axis orientation,
M1 is assumed positive if it stretches the profile fibers that are inner
with respect to the frame.

Similarly, Fig. 3 collects the M2 bending moment component, as-
sumed positive if it stretches the fibers on the “back” of the frame (i.e.
the cross section points whose z or 1 coordinates are the most negative),
along with the Mt torsional moment, whose sign is explicitly reported.
Again, please derive them independently, since some mistakes might be
present.

We observe that all the diagrams are branchwise linear, due to the
piecewise straight centroidal segment nature, and the absence of dis-
tributed actions. In such condition, a generic M moment components
may be conveniently expresses as

M(s) = M0 f
(s
l

)
+Ml g

(s
l

)
, f(ξ) = 1− ξ, g(ξ) = ξ

where s ∈ [0, l] is a dimensional abscissa which spans through the l
extension of each oriented segment, M0 and Ml are the moment values
at the extremities, and {f, g} are two weight function whose aim is
to linearly interpolate the moment extremal values along the beam
segment interior.

For each segment, the associated strain energy is evaluated as

U =

∫ l

0

M2
1 (s)

2EJ︸ ︷︷ ︸
symm.

+
M2

2 (s)

2EJ
+
M2

t (s)

2GKt︸ ︷︷ ︸
skew−symm.

ds, (1)
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Figure 2: XXX
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where

J =
πd3t

8
, Kt =

πd3t

4
, G =

E

2 (1 + ν)
;

each beam branch contribution is finally accumulated to obtain the
overall structure strain energy, possibly split into its symmetric and
skew-symmetric parts.

Once the structure strain energy has been evaluated, we cast a
system of equations through which we impose a null deflection in A,
namely

∂U

∂XA
= 0

∂U

∂YA
= 0

∂U

∂ΨA
= 0 (2)

∂U

∂ZA
= 0

∂U

∂ΘA
= 0

∂U

∂ΦA
= 0. (3)

The value of the six unknown reactions at A may be then derived as a
(linear) function of the remaining loads, e.g.

XA = XA (F, P,H, I) = αF + βP + γH + δI

YA = YA (F, P,H, I) = . . .

ΨA = . . .

etc., where the linear combination coefficients are placeholders for their
actual counterpart, which derive from the system solution.

Once obtained expressions for the constraint reactions in A, we
substitute them within the structure strain energy expression, thus
deriving for the latter an form which depends on the external loads
alone, i.e.

U = U (P, F,XA, YA,ΨA, H, I, ZA,ΘA,ΦA)

= U (P, F,XA(P, F,H, I), . . . ,ΦA(P, F,H, I))

= U (P, F,H, I) .

All the contribution of the external loads to the structure strain energy
are now made explicit - they could formally remain nested within the
constraint reaction symbols, but at the risk of leaving them behind
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while performing the differentiation5, and we may proceed in evaluating
the requested deflections as

ũB =
∂U

∂F

∣∣∣∣
F=0,I=0

ũC =
∂U

∂P

∣∣∣∣
F=0,I=0

w̃C =
∂U

∂H

∣∣∣∣
F=0,I=0

w̃D =
∂U

∂I

∣∣∣∣
F=0,I=0

,

where the fictitious nature of the F, I loads is finally declared.
The constraint reaction components at A may be derived by sub-

stituting the actual null value of F, I in their previously obtained ex-
pressions; their counterpart at E may be derived by casting and solving
the equilibrium equations for the whole principal structure, now that
all the therein applied loads are known.

5it actually happens with the Maxima algebraic manipulator if the constraint
reaction compontents are not explicitly declared dependent on them
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