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Chapter 1

Spatial beam structures
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1.1 Beam axis and cross section definition

A basic necessary condition for identifying a deformable body as a
beam – and hence applying the associated framework – is that its
centroidal curve be at least loosely recognizable.

Once such centroidal line has been roughly defined, locally perpen-
dicular planes may be derived whose intersection with the body itself
defines the local beam cross section.

Then, the G center of gravity position may be computed for each
of the local cross sections, leading to a refined, potentially iterative
definition for the beam centroidal axis1.

A local cross-sectional reference system may be defined by aligning
the normal z axis with the beam centroidal curve, and by employing,
as the first in-section axis, namely x, the projection of a given global
v vector, which is assumed not to be parallel to the beam axis.

The second in-section axis y may be then derived, in order to obtain
a Gxyz right-handed coordinate system, whose unit vectors are ı̂, ̂, k̂.

If a thin walled profile is considered in place of a solid cross sec-
tion member – i.e., the section wall midplane is recognizable too (see
paragraph XXX), then a curvilinear coordinate 0 ≤ s ≤ l may be de-
fined that spans the in-cross-section wall midplane, along with a local
through-wall-thickness coordinate −t(s)/2 ≤ r ≤ +t(s)/2.

Such s, r, in-section coordinates based on the profile wall may be
employed in place of their cartesian x, y counterparts, if favourable.

Beam axis may be discontinuous at sudden body geometry changes;
a rigid body connection is ideally assumed to restrict the relative mo-
tion of the proximal segments. Such rigid joint modeling may be ex-
tended to more complex n-way joints; if the joint finite stiffness is to
be taken into account, it has to be described through the entries of a
rank 6(n− 1) symmetric square matrix 2.

At joints or beam axis angular points the cylindrical bodies swept
by the cross sections do usually overlap, besides they only loosely mimic
the actual deformable body geometry; the results obtained through
the local application of the elementary beam theory may at most be

1Here, centroidal curve, centroidal line, centroidal axis, or simply beam axis are
treated as synonyms.

2i.e., joint stiffness is unfortunately not a scalar value.
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Figure 1.1: A beam structure.

employed to scale the triaxial local stress/strain fields3, which have to
be evaluated resorting to more complex modelings.

1.1.1 A worked example

See Figure 1.1. TODO.

1.2 Cross-sectional resultants for the spatial
beam

At any point along the axis the beam may be notionally split, thus
obtaining two facing cross sections, whose interaction is limited to three
components of interfacial stresses, namely the axial normal stress σzz
and the two shear components τyz, τzx.

Three force resultant components may be defined by integration
along the cross section area, namely the normal force, the y- and the

3The peak stress values obtained through the elementary beam theory may be
profitably employed as nominal stresses within the stress concentration effect frame-
work.
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x- oriented shear forces, respectively defined as

N =

∫

A
σzzdA

Sy =

∫

A
τyzdA

Sx =

∫

A
τzxdA

Three moment resultant components may be similarly defined, namely
the x- and y- oriented bending moments, and the torsional moment.
However, if the centroid is the preferred fulcrum for evaluating the
bending moments, the below discussed C shear center is employed for
evaluating the torsional moment. We hence define

Mx ≡M(G,x) =

∫

A
σzzydA

My ≡M(G,y) = −
∫

A
σzzxdA

Mt ≡M(C,z) =

∫

A
[τyz(x− xC)− τzx(y − yC)] dA

The applied vector associated to the normal force component (G,Nk̂)
is located at the section center of gravity , whereas the shear force
(C, Sxı̂ + Sy ̂) is supposed to act at the shear center; such convention
decouples the energy contribution of force and moment components for
the straight beam.

Cross section resultants may be obtained, based on equilibrium for
a statically determinate structure. The ordinary procedure consists in

• notionally splitting the structure at the cross section whose re-
sultants are under scrutiny;

• isolating a portion of the structure that ends at the cut, whose
locally applied loads are all known; the structure has to be pre-
liminarily solved for the all the constraint reactions that act on
the isolated portion;

• setting the equilibrium equations for the isolated substructure,
according to which the cross-sectional resultants are in equilib-
rium with whole loading.
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1.3 Axial load and uniform bending

It is preliminarily noted that the elementary extensional-flexural solu-
tion is exact with respect to the Theory of Elasticity if the following
conditions hold:

• beam constant section;

• beam rectilinear axis;

• absence of locally applied loads;

• absence of shear resultants4 (i.e. constant bending moments);

• principal material directions of orthotropy are uniform along the
section, and one of them is aligned with the beam axis;

• the ν31 and the ν32 Poisson’s ratios5 are constant along the sec-
tion, where 3 means the principal direction of orthotropy aligned
with the axis. Please note that Eiνji = Ejνij , and hence νji 6= νij
for a generally orthotropic material.

Most of the above conditions are in fact violated in many textbook
structural calculations, thus suggesting that the elementary beam the-
ory is robust enough to be adapted to practical applications, i.e. limited
error is expected if some laxity is used in circumscribing its scope6.

The extensional-flexural solution builds on the basis of the following
simplifying assumptions:

• the in-plane7 stress components σx, σy, τxy are null;

• the out-of-plane shear stresses τyz, τzx are also null;

4A locally pure shear solution may be in fact superposed; such solution may
however not be available for a general cross section.

5We recall that νij is the Poisson’s ratio that corresponds to a contraction in
direction j, being a unitary extension applied in direction i in a manner that the
elastic body is subject to a uniaxial stress state.

6Measures for both the error and the violation have to be supplied first in order
to quantify the approximation.

7Both the in-plane and the out-of-plane expressions for the characterization of
the stress/strain components refer to the cross sectional plane.
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• the axial elongation εz linearly varies along the cross section,
namely

εz = a+ bx+ cy (1.1)

or, equivalently8, each cross section is assumed to remain planar
in the deformed configuration.

The three general constants a, b and c possess a physical meaning;
in particular a represents the axial elongation ε̄ as measured at the
centroid9, c represents the 1/ρx curvature10 whereas b represent the
1/ρy curvature, apart from its sign.

Figure 1.2 (c) justifies the equality relation c = 1/ρx; the beam
axial fibers with a ∆z initial length are elongated by the curvature up
to a ∆θ (ρx + y) deformed length, where ∆θρx equates ∆z based on
the length of the unextended fibre at the centroid. By evaluating the
axial strain value for a general fiber, it follows that εz = 1/ρx y.

In addition, Figure 1.2 (c) relates the 1/ρx curvature to the dis-
placement component in the local y direction, namely v, and to the
section rotation angle with respect to the local x axis, namely θ, thus
obtaining

dθ

dz
=

1

ρx
, θ = −dv

dz
,

d2v

dz2
= − 1

ρx
(1.2)

Following analogous considerations, see 1.2 (e), we may similarly
obtain

dφ

dz
=

1

ρy
, φ = +

du

dz
,

d2u

dz2
= +

1

ρy
(1.3)

where φ is the cross section rotation about the local y axis, and u is
the x displacement component.

According to the assumptions in the preamble, a uniaxial stress
state is assumed, where the only nonzero σz stress component may be
determined as

σz = Ezεz = Ez

(
ε̄− 1

ρy
x+

1

ρx
y

)
(1.4)

8The axial, out-of-plane displacement ∆w =
∫

∆l
εzdz = ∆l (a+ bx+ cy) ac-

cumulated between two contiguous cross sections with an ∆l initial distance, is
consistent with that of a relative rigid body motion.

9or, equivalently, the average elongation along the section, in an integral sense.
10namely the inverse of the beam curvature radii as observed with a line of sight

aligned with the x axis. Curvature is assumed positive if the associated θ section
rotation grows with increasing z, i.e. dθ/dz > 0.
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Figure 1.2: A differential fibre elongation proportional to the y coor-
dinate induces a curvature 1/ρx on the normal plane with respect to
the x axis. A differential fibre contraction proportional to the x coor-
dinate induces a curvature 1/ρy on the normal plane with respect to
the y axis. The didascalic trapezoidal deformation modes (b) and (e)
clearly associate the differential elongation/contraction with the posi-
tive relative end rotation; they are however affected by a spurious shear
deformation as evidenced by the skewed corner.
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Figure 1.3: Positive x and y bending moment components adopt the
same direction of the associated local axes at the beam segment end
showing an outward-oriented arclength coordinate axis; at beam seg-
ment ends characterized by an inward-oriented local z axis, the same
positive bending moment components are locally counter-oriented to
the respective axes.

Stress resultants may easily be evaluated based on Fig. 1.3 as

N =

∫∫

A
EzεzdA = EAε̄ (1.5)

Mx =

∫∫

A
EzεzydA = EJxx

1

ρx
− EJxy

1

ρy
(1.6)

My = −
∫∫

A
EzεzxdA = −EJxy

1

ρx
+ EJyy

1

ρy
(1.7)
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where the combined material/cross-section stiffness moduli

EA =

∫∫

A
Ez(x, y) dA (1.8)

EJxx =

∫∫

A
Ez(x, y)yy dA (1.9)

EJxy =

∫∫

A
Ez(x, y)yx dA (1.10)

EJyy =

∫∫

A
Ez(x, y)xx dA (1.11)

may also be rationalized as the cross section area and moment of in-
ertia, respectively, multiplied by a suitably averaged Young modulus,
evaluated in the axial direction.

Those moduli simplify to their usual EzA,EzJ∗∗ analogues, where
the influence of the material and of the geometry are separated if the
former is homogeneous along the beam cross section.

From Eqn. 1.5 we obtain

ε̄ =
N

EA
. (1.12)

By concurrently solving Eqns. 1.6 and 1.7 with respect to the 1/ρx
and 1/ρy curvatures, we obtain

1

ρx
=
MxEJyy +MyEJxy

EJxxEJyy − EJ2
xy

(1.13)

1

ρy
=
MxEJxy +MyEJxx

EJxxEJyy − EJ2
xy

(1.14)

1

ρeq
=

√
1

ρ2
x

+
1

ρ2
y

(1.15)

Axial strain and stress components may then be obtained for any
cross section point by substituting the above calculated generalized
strain components ε̄, 1/ρx and 1/ρy holding for the extensional-flexural
beam into Eqn. 1.4.

As an alternative, the following

9
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thus obtaining

σz = Ezεz (1.16)

= αMx + βMy + γN (1.17)

where

α
(
x, y, Ez, EJ∗∗

)
= Ez(x, y)

−EJxyx+ EJyyy

EJxxEJyy − EJ2
xy

(1.18)

β
(
x, y, Ez, EJ∗∗

)
= Ez(x, y)

−EJxxx+ EJxyy

EJxxEJyy − EJ2
xy

(1.19)

γ
(
x, y, Ez, EA

)
= Ez(x, y)

1

EA
. (1.20)

The peak axial strain is obtained at points farther from neutral axis
of the stretched section; such neutral axis may be graphically defined
as follows:

• the coordinate pair

(xN , yN ) ≡
(
ēρ2
xρy

ρ2
x + ρ2

y

,−
ēρxρ

2
y

ρ2
x + ρ2

y

)
;

defines its nearest pass-through point with respect to the G cen-
troid; the two points coincide in the case ε̄ = 0.

• its orientation is defined by the unit vector

n̂‖ =
√
ρ2
x + ρ2

y

(
1

ρx
,

1

ρy

)
,

whereas the direction

n̂⊥ =
√
ρ2
x + ρ2

y

(
− 1

ρy
,

1

ρx

)
,

is orthogonal to the neutral axis, and oriented towards growing
axial elongations.
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The cross section projection on the (N, n̂⊥) line defines a segment
whose ends are extremal with respect to the axial strain.

If the bending moment and the curvature component vectors are
imposed to be parallel, i.e.

λ

[
Mx

My

]
=

[
1
ρx
1
ρy

]
=

1

EJxxEJyy − EJ2
xy

[
EJyy EJxy
EJxy EJxx

]

︸ ︷︷ ︸
[EJ ]

[
Mx

My

]
(1.21)

an eigenpair problem is defined that leads to the definition of the
principal directions for the cross sectional bending stiffness. In par-
ticolar, the eigenvectors of the [EJ ] matrix define the two principal
bending stiffness directions, and the associated EJ11, EJ22 eigenval-
ues constitute the associated bending stiffness moduli.

TODO: please elaborate...
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1.4 Stresses due to the shear cross section re-
sultants

In the presence of nonzero shear resultants, the bending moment ex-
hibits a linear variation with the axial coordinate z in a straight beam.
Based on the beam segment equilibrium we have

Sy =
dMx

dz
, Sx = −dMy

dz
, (1.22)

as rationalized in Fig. 1.5, with dz → 0 and Mx,My differentiable with
respect to z.

The linear variation of the bending-induced curvature in z causes
a likewise linear variation of the pointwise axial strain; stress variation
is also linear in the case of constant Ez longitudinal elastic modulus.

In particular, the differentiation with respect to z of σz as espressed
in Eqn. 1.17 returns

dσz
dz

= α
(
x, y, Ez, EJ∗∗

)
Sy − β

(
x, y, Ez, EJ∗∗

)
Sx (1.23)

since its α, β, γ factors are constant with respect to z; the bending
moment derivatives are here expressed in terms of the shear resultants,
as in Eqns. 1.22.

Figure 1.4 rationalizes the axial equilibrium for an elementary vol-
ume of material; we have

dτzx
dx

+
dτyz
dy

+
dσz
dz

+ qz = 0 (1.24)

where, for the specific case, the distributed volumetric load qz is zero.
It clearly emerges from such relation that the shear stresses τzx, τyz,

that were null within the uniform bending framework, are non-uniform
along the section – and hence not constantly zero – in the presence of
shear resultants.

A treatise on the pointwise solution of a) the equilibrium equations
1.24, once coupled with b) the compatibility conditions and with c)
the the material elastic response, is beyond the scope of the present
contribution, although it has been derived for selected cross sections in
e.g. [1].

12
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Figure 1.4: Equilibrium conditions with respect to the axial z transla-
tion for the infinitesimal volume extracted from the beam. In the case
under scrutiny, the distributed volume action qz is null.

1.4.1 The Jourawsky approach and its extension for a
general section

The aforementioned axial equilibrium condition, whose treatise is cum-
bersome for the infinitesimal volume, may be more conveniently dealt
with if a finite portion of the beam segment is taken into account, as
in Figure 1.5.

A beam segment is considered whose axial extent is dz; the beam
cross section is partitioned based on a (possibly curve, see Fig. 1.6)
line that isolates an area portion A∗ – and the related beam segment
portion – for further scrutiny; axial equilibrium equation may then be
stated for the isolated beam segment portion as follows

τ̄zit =

∫

A∗

dσz
dz

dA, (1.25)

where

τ̄zi =
1

t

∫

t
τzidr (1.26)

is the average shear stress acting in the z direction along the cutting
surface; i is the (locally normal) inward direction with respect to such

13
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Figure 1.5: Equilibrium conditions for the isolated beam segment por-
tion. It is noted that the null σz variation locus, dσz = 0, does not
coincide with the bending neutral axis in general. Also, the depicted
linear variation of dσz with the D distance from such null dσz locus
does not hold in the case of non-uniform Ez modulus.
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t tA∗ A∗

Figure 1.6: The curve employed for isolating the beam segment por-
tion defines the direction of the τzi components whose average value is
evaluated.
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a surface. Due to the reciprocal nature of the shear stresses, the same
τ̄zi shear stress acts along the cross sectional plane, and locally at the
cutting curve itself. These shear actions are assumed positive if inward
directed with respect to A∗.

The τ̄zit product is named shear flow, and may be evaluated along
a general cutting curve.

It is noted that, according to Eqn. 1.25, no information is pro-
vided with regard to a) the τzr shear stress that acts parallel to the
cutting curve, nor b) the pointwise variation of τzi with respect of
its average value τ̄zi. If the resorting to more cumbersome calculation
frameworks is not an option, those quantities are usually just neglected;
an informed choice for the cutting curve is thus critical for a reliable
application of the method.

In the simplified case of a) uniform material and b) local x, y axes
that are principal axes of inertia (i.e. Jxy = 0), the usual formula is
obtained

τ̄zit =

∫

A∗

(
ySy
Jxx

+
xSx
Jyy

)
dA =

ȳ∗A∗

Jxx
Sy +

x̄∗A∗

Jyy
Sx, (1.27)

where ȳ∗A∗ and x̄∗A∗ are the first order area moments of the A∗ section
portion with respect to the x and y axes, respectively11.

1.4.2 Shear induced stresses in an open section, thin
walled beam

In the case of thin walled profiles, the integral along the isolated area in
Eqn. 1.25 may be performed with respect to the arclength coordinate
alone; the value the dσz/dz integrand assumes at the wall midplane is
supposed representative of its integral average along the wall thickness,
thus obtaining

τ̄zit = qzi =

∫ s

0

∫ t/2

−t/2

dσz
dz

drdς ≈
∫ s

0

dσz
dz

∣∣∣∣
r=0

tdς. (1.28)

Such assumed equivalence strictly holds for a) straight wall seg-
ments12 and b) a linear variation of the integrand along the wall, a

11According to the employed notation, (x̄∗, ȳ∗) are the centre of gravity coordi-
nates for the A∗ area.

12i.e. the Jacobian of the (s, r) 7→ (x, y) mapping is constant with r.
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condition, the latter, that holds if the material properties are homoge-
neous with respect to the wall midplane13; in the more general case,
the error incurred by this approach vanishes with vanishing thickness
for what concerns assumption a), whereas if the material is inhomoge-
neous, through-thickness averaged Ēz, Ḡzi moduli may be employed in
place of their pointwise counterpart.

If a thin walled section segment is considered such that it is not
possible to infer that the interfacial shear stress is zero at at least
one of its extremities, a further term needs to be considered for the
equilibrium, thus obtaining

τ̄zi(s)t(s) = q(s) =

∫ s

a

dσz
dz

tdς + τ̄zi(a)t(a)︸ ︷︷ ︸
qA

. (1.29)

In the case of open thin walled profiles, however, such a choice for the
isolated section portion is suboptimal, unless the qA term is known.

1.4.3 Shear induced stresses in an closed section, thin
walled beam

In the case of a closed thin walled, generally asymmetric section, the
search for a point along the wall at which the shear flow may be as-
sumed zero is normally not viable, and the employment of Eq. 1.29 in
place of the simpler Eq. 1.28 is unavoidable.

In this case, a parametric value for the τ̄iz shear stress is assumed
for a set of points along the cross section midcurve – one for each
elementary closed loop14 if the points are non-redundantly chosen15.

In the multicellular cross section example shown in Figure 1.7, two
elementary loops are detected; shear flows at the A, B points are para-
metrically defined as τAtA and τBtB , respectively.

The τ(s) shear stress at each point along the profile wall may then
be determined based on Eqn. 1.29 as a function a) of the shear resultant

13a linear dεz/dz axial strain variation is in fact associated to the curvature vari-
ation in z, and not an axial stress variation;

14i.e. a closed loop not enclosing any other closed loop.
15Redundancy may be pointed out by ideally cutting the cross section at these

points: if a monolithic open cross section is obtained, the point choice is not redun-
dant; if a portion of the section is completely isolated, and a loop remains closed,
the location of these points causes redundancy.

16
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(a) (b) (c) (d)

Su
1 Su

2 τuA τuB

≡ [1 stress unit ]

f;S1(s) f;S2(s) f;A(s) f;B(s)

Figure 1.7: Contributions to the τzi(s) shear stress along the profile
walls associated to a) a unit shear force component Su

1 applied along
the first principal axis of inertia, whose magnitude equals the product
of the cross section area and the unit stress, b) an analogous shear
force component Su

2 aligned with the second principal axis of inertia,
c) a unit shear stress τu

A applied at the opposite fictitious cut surfaces
at A, and d) a unit shear stress τu

B applied at the opposite fictitious
cut surfaces at B. Profile wall thickness is constant in the presented
example, thus producing a continuous shear stress diagram, whereas
continuity is rather aa unit shear stress τu

A applied at the opposite
fictitious cut surfaces at a property of the shear flow.
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components Sx and Sy, and b) of the parametrically defined shear
stresses at the A,B points.

Due to the assumed linear response for the profile, superposition
principle may be employed in isolating the four elementary contribu-
tions to the shear stress flow along the section.

The first two elementary contributions f;Sx(s) and f;Sy(s) are re-
spectively due to the action alone of the x and y shear force compo-
nents, whose magnitudes Su

x and Su
y is assumed equal the product of

the stress unit (e.g. 1 MPa) and of the cross sectional area. Those
forces are assumed to act in the ideal absence of shear flow at points
where the latter is assumed as a parameter (points A and B in Figure
1.7).

Since the condition of zero shear flow is stress-compatible with an
opening in the closed section loop, the cross section may be idealized
as severed at the assumed shear flow points, and hence open. The
equilibrium-based solution procedure derived for the open thin-walled
section may hence be profitably applied.

A family of further elementary contributions, one for each of the
assumed shear stress points, may be derived by imposing zero para-
metric shear flow at all the points but the one under scrutiny, and in
the absence of externally applied shear resultants. The elastic problem
may be rationalized as an open – initially closed, then ideally severed
– thin walled profile, that is loaded by an internal constraint action
whose magnitude is unity in terms of stresses. Equilibrium considera-
tions reduce to the conservation of the shear flow due to the absence of
dσz/dz differential axial stress, as in the case of a closed profile under
torsion discussed below.

Figures 1.7 (a) and (b) show the shear stress contributions f;S1(s)
and f;S2(s) induced in the ideally opened (i.e. zero redundant shear
flows at the A,B points) multicellar profile by the first and the second
shear force components, respectively; due to the author distraction,
such figure refers to shear components aligned with the principal di-
rections of bending stiffness, and not to the usual x,y axes.

Figures 1.7 (c) and (d) show the shear stress contributions f;A(s)
and f;B(s) associated to unity values for the parametric shear flows at
the A, B segmentation points, respectively.

The cumulative shear stress distribution for the section in Figure
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1.7 is

τ(s) =
S1

A f;S1(s) +
S2

A f;S2(s) + τAf;A(s) + τBf;B(s) (1.30)

where s is a suitable arclength coordinate.
The associated elastic potential energy may then be integrated over

a ∆z beam axial portion, thus obtaining

∆U =

∫

s

τ2

2Gsz
t∆zds (1.31)

According to the Castigliano second theorem, the ∆U derivative
with respect to the τ̄i assumed shear stress value at the i-th segmenta-
tion point equates the generalized displacement with respect to which
the internal constraint reaction works, i.e. the t∆zδ̄i integral of the
relative longitudinal displacement between the cut surfaces; we hence
have

∂∆U

∂τ̄i
= δ̄it∆z (1.32)

The δ̄i symbol refers to the average value along the t∆z area of
such axial relative displacement.

Material continuity requires zero δ̄i value at each segmentation
point, thus defining a set of equations, one for each τ̄i unknown param-
eter, whose solution leads to the definition of the actual shear stress
distribution along the closed wall profile.

19



i
i

“dispensa˙2018˙master” — 2019/6/7 — 23:37 — page 20 — #21 i
i

i
i

i
i

1.5 Shear stresses due to the St. Venant tor-
sion

The classical solution for the rectilinear beam subject to uniform tor-
sion predicts a displacement field that is composed by the superpo-
sition of a) a rigid, in-plane16 cross section rotation about the shear
centre, named twist, whose axial rate is uniform, and b) an out-of-plane
warping displacement that is uniform in the axial direction, whereas
it varies within the section; such warping displacement is zero in the
case of axisymmetric sections only (e.g. solid and hollow circular cross
sections).

Due to the rigid nature of the in-plane displacements, the in-plane
strain components εx, εy, εxy are zero; the in-plane stress components
σx, σy, τxy, and the normal stress σz are also zero if z is a direction
of orthotropy for the material – as it is assumed in the following. The
motion is internally restricted only due to the nonzero out-of-plane
shear stresses τyz and τzx, that develop as an elastic reaction to the
associated strain components.

A more in-depth treatise of the topic involves the solution of an
plane, inhomogeneous Laplace partial differential equation with essen-
tial conditions imposed at the cross section boundary, which is beyond
the scope of the present contribution.

However, in the case of open- and closed- section, thin walled
beams, simplified solutions are available based on the assumptions that
a) the out-of-plane shear stresses are locally aligned to the wall midsur-
face - i.e. τzr = 0 leaving τzs as the only nonzero stress component17,
and b) the residual τzs shear component is either constant by moving
through the wall thickness (closed section case), or it linearly varies
with the through-thickness coordinate r.

1.5.1 Solid section beam

TODO.

16the rotation vector is actually normal to the cross sectional plane; the in-plane
motion characterization refers to the associated displacement field.

17Here, the notation introduced in paragraph XXX for the thin walled section is
employed.
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Figure 1.8: Axial equilibrium for a portion of profile wall, in the case
of a closed, thin-walled profile subject to torsion.

1.5.2 Closed section, single-celled thin walled beam

The τsz component is assumed uniform along the wall thickness, or,
equivalently, its deviation from the average value is neglected in calcu-
lations.

In the case the material is non-uniform across the thickness, the
γsz shear strain is assumed uniform, whereas the τsz varies with the
varying Gsz shear modulus.

In the absence of σz, the axial equilibrium of a portion of beam
segment dictates that the shear flow tτ remains constant along the
wall, i.e.

t1τ1 = t2τ2

as depicted in Figure 1.8.
By skipping some further interesting observations (TODO) we may

just introduce the Bredt formula for the cross-section torsional stiffness

Kt =
4A2

∮
1
t dl

(1.33)

which is valid for single-celled, closed thin wall sections.
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The peak stress is located at thinnest point along the wall, and
equals

τmax =
Mt

2tminA
(1.34)

.

1.5.3 Closed section, multi-celled thin walled beam

TODO. However, a lower bound for the stiffness of the multi-celled
thin walled beam may be obtained by fictitiosly severing the inner
walls, thus obtaining a single cell defined by the outer wall alone.

An upper bound for the stiffness is obtained by assuming each
shared inner wall as shear-rigid, and then by summing the stiffnesses of
each elementary closed loop, as they constituted independent profiles.
The shear-rigid nature of the inner walls is enforced by neglecting their
contribution to the circuital integral at the Bredt formula denominator.

1.5.4 Open section, thin walled beam

The shear strain component γzs is assumed linearly varying across the
thickness; if the Gsz shear modulus is assumed uniform, such linear
variation characterizes the τzs stress components too.

The average value along the thickness of the τzs stress component
is zero, as zero is the shear flow as defined in the previous paragraph.

For thin enough open sections of uniform and isotropic material we
have

KT ≈
1

3

∫ l

0
t3(s)ds (1.35)

If the thin-walled cross section may be described as a sequence of
constant thickness wall segments, the simplified formula

KT ≈
1

3

∑

i

lit
3
i (1.36)

is obtained where ti and li are respectively the length and the thickness
of each segment.

The peak value for the τzs stress component is observed in corre-
spondence to thickest wall section point and it equates
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Figure 1.9: The problem under scrutiny.

τmax =
Mttmax

KT
(1.37)

By applying the reported formulas to a rectangular section whose
span length is ten times the wall thickness, the torsional stiffness is
overestimated by slightly less than 7%; a similar relative error is re-
ported in terms of shear stress underestimation.

1.5.5 Torsional stiffening due to restrained warping at
profile ends: Vlasov torsion theory

As a pedagogical introduction to the restrained warping torsion, an
open, thin-walled I-section beam18 is considered whose each end is
butt-welded to a massive plate, see Fig. 1.9, that locally impede the
warping deformation at the base of the de Saint Venant torsion theory.

Two opposite torsional moments T are applied that induce an axial
counter-rotation of the beam terminals, and hence a twist deformation
of the profile, quantified this through the ψ(z) section twist angle.

The cross sectional motion is limited to a twist rotation around the
z axis, which is centroidal with respect to shear, plus the restrained

18also named H-section, double-T, based on normalized profile codes, e.g. IPN,
IPE, or UC beams
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= +
ψ

h v = ψh
2ψ

ψ ψ
u

+

twist displacement displacement
blade blade widthwise blade transversecross-section

twist

neglected

Figure 1.10: XXX

warping out-of-plane displament.
In Figure 1.10 the profile walls are ideally partitioned into a set

of limited width blades; the profile cross section rotation induces at
the blade sections three distinct motions, i.e. a) a twist rotation, b) a
widthwise translation, and c) a transverse translation with respect to
the blade width.

The axial rate of the twist motion a) is at the base of the de St.
Venant torsional model for open thin walled sections, which covers it
exhaustively; conversely, the second order axial rate of the b) and c)
translations induce bending curvatures at the blades, whose contribu-
tion to the internal energy increases the profile stiffness in torsion.

In particular, whereas the c) contribution acts along the blade bend-
ing weak axis and is usually neglected, the b) contribution is consider-
able and it constitutes the basis of the Vlasov restrained torsion theory
for thin walled profiles. According to such a theory, blades a

Various formulas
x+ flange bending

V =
dMx

dz

T = hV = h
dMx

dz

since Mx

EJxx
= 1

ρx
= −d2v

dz2 , we substitute in the equation above Mx =

−EJxx d
2v
dz2 , thus obtaining

T = −hEJxx
d3v

dz3
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σz
τsz

T

T

V

τsz

V

h

≡
TVla

(b)

(a)

≡
TdSV

(c)

t

Figure 1.11: XXX

The v transverse displacement may be determined based on the
local twist angle ψ as

v =
h

2
ψ

and a torque to (third derivative of) twist angle may be finally
determined as

T = −h
2

2
EJxx

d3ψ

dz3
= −ECw

d3ψ

dz3

where the ECw cross-sectional constant for warping has been defined
for the I beam as

ECw = I
h2

2
.

Such T torsional moment, which is transmitted based on the flange
shear load under restrained warping condition, will be referred to in
the following as TVla, as opposed to its counterpart according to the
de St. Venant torsion theory, i.e.

TdSV = GKt
dψ

dz
.
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Characteristic length of the cross section with respect to the Vlasov
(restrained warping) torsion theory.

d =

√
ECw
GKt

The cross-sectional constant for warping may then be evaluated as

ECw = d2GKt

where GKt is the torsional stiffness for the cross-section (material prop-
erties included) according to the free-warp, de St. Venant torsion the-
ory.

Since the overall torsional moment is constant along the beam in
the absence of distributed torsional actions, and it consists in the sums
of the two TVla and TdSV contributes, we have

0 =
dT

dz
= +

dTdSV

dz
+
dTVla

dz
= −ECw

d4ψ

dz4
+GKt

d2ψ

dz2

0 = −d2d
4ψ

dz4
+
d2ψ

dz2

which is a 4th-order differential equation in the ψ unknown func-
tion, whose solutions take the general form

ψ(z) = C1 sinh z
d + C2 cosh z

d + C3
z
d + C4

In the theory of restrained torsion warping, an auxiliary, higher
order resultant moment quantity named //bimoment// is introduced,
that for the pedagogical I-section example is related to the flange bend-
ing moment by the identity

B = Mxx · h
In general, we have

B = −ECw
d2ψ

dz2
;

axial stresses along the cross section linearly scale with the bimo-
ment quantity, if the material behaves elastically.

Warping related boundary conditions may be stated as follows: free

warping: d2ψ
dz2 = 0, i.e. absence of bimoment, B = 0; no warping:
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dψ
dz = 0, i.e. absence of de St. Venant transmitted moment, TdSV =
0; Imposed rotations and imposed torsional moments complementary
boundary conditions may be defined as usual.
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1.6 Castigliano’s second theorem and its appli-
cations

Castigliano’s second theorem may be employed for calculating deflec-
tions and rotations, and it states:

If the strain energy of an elastic structure can be expressed
as a function of generalised loads Qi (namely, forces or mo-
ments) then the partial derivative of the strain energy with
respect to generalised forces supplies the generalised dis-
placement qi (namely displacements and rotations with re-
spect to which the generalized forces work).

In equation form,

qi =
∂U

∂Qi

where U is the strain energy.

1.7 Internal energy for the spatial straight beam

The linear density of the elastic potential (alternatively named internal)
energy for the spatial rectilinear beam may be derived as a function of
its cross section resultants, namely

dU

dl
=

JηηM
2
ξ + JξξM

2
η + 2JξηMξMη

2E
(
JξξJηη − J2

ξη

) +
N2

2EA
(1.38)

+
χξS

2
ξ + χηS

2
η + χξηSηSξ

2GA
+

M2
t

2GKt
(1.39)

where

• A, Jηη, Jξξ and Jξη are the section area and moments of inertia,
respectively;

• Kt is the section torsional stiffness (not generally equivalent to
its polar moment of inertia);
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Figure 1.12: A nonlinearly elastic (namely stiffening) structure; the
bending moment diagram is evaluated based on the beam portion
equilibrium in its deformed configuration. The complementary elas-
tic strain energy U∗ is plotted for a given applied load f̄ or assumed
displacement δ̄, alongside the elastic strain energy U .

• E and G are the material Young Modulus and Shear Modulus,
respectively; the material is assumed homogeneous, isotropic and
linearly elastic.

The shear energy normalized coefficients χη,χξ,χξη are specific to
the cross section geometry, and may be collected from the expression
of the actual shear strain energy due to concurrent action of the Sη, Sξ
shear forces.

In cases of elastically nonlinear structures, the second Castigliano
theorem may still be employed, provided that the complementary elas-
tic strain energy U∗ is employed in place of the strain energy U , see Fig.
1.12. The two energy terms are equal for linearly behaving structures.
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Chapter 2

Fundamentals of Finite
Element Method for
structural applications
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n4

N1(ξ, η)

ξ

η

(a) (b)

Figure 2.1: Quadrilateral elementary domain (a), and a representative
weight function (b).

2.1 Preliminary results

2.1.1 Interpolation functions for the quadrilateral do-
main

The elementary quadrilateral domain. A quadrilateral domain
is considered whose vertices are conventionally located at the (±1,±1)
points of an adimensional (ξ, η) plane coordinate system, see Figure
2.1. Scalar values fi are associated to a set of nodal points Pi ≡
[ξi, ηi], which for the present case coincide with the quadrangle vertices,
numbered as in Figure.

A f(ξ, η) interpolation function may be devised by defining a set
of nodal influence functions Ni(ξ, η) to be employed as the coefficients
(weights) of a moving weighted average

f(ξ, η)
def
=
∑

i

Ni(ξ, η)fi (2.1)

Requisites for such weight functions are:

• the influence of a node is unitary at its location, whereas the
influence of the others locally vanishes, i.e.

Ni(ξj , ηj) = δij (2.2)

where δij is the Kronecker delta function.
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• for each point of the domain, the sum of the weights is unitary
∑

i

Ni(ξ, η) = 1, ∀[ξ, η] (2.3)

Moreover, suitable functions should be continuous and straightfor-
wardly differentiable up to any required degree.

Low order polynomials are ideal candidates for the application; for
the particular domain, the nodal weight functions may be stated as

Ni(ξ, η)
def
=

1

4
(1± ξ) (1± η) , (2.4)

where sign ambiguity is resolved for each i-th node by enforcing Eqn.
2.2.

The (2.3) combination of 2.4 functions turns into a general linear
relation in (ξ, η) with coplanar in the ξ, η, f space – but otherwise
arbitrary – nodal points.

Further generality may be introduced by not enforcing coplanarity.
The weight functions for the four-node quadrilateral are in fact

quadratic although incomplete1 in nature, due to the presence of the
ξη product, and the absence of any ξ2, η2 term.

Each term, and the combined f(ξ, η) function, defined as in Eqn.
2.1, behave linearly if restricted to ξ = const. or η = const. loci –
namely along the four edges; quadratic behaviour may instead arise
along a general direction, e.g. along the diagonals, as in Fig. 2.1b
example. Such behaviour is called bilinear.

We now consider the f(ξ, η) weight function partial derivatives.
The partial derivative

∂f

∂ξ
=

(
f2 − f1

2

)

︸ ︷︷ ︸
[∆f/∆ξ]12

(
1− η

2

)

︸ ︷︷ ︸
N1+N2

+

(
f3 − f4

2

)

︸ ︷︷ ︸
[∆f/∆ξ]43

(
1 + η

2

)

︸ ︷︷ ︸
N4+N3

= aη + b (2.5)

linearly varies from the incremental ratio value measured at the η = −1
lower edge, to the value measured at the η = 1 upper edge; the other
partial derivative

∂f

∂η
=

(
f4 − f1

2

)(
1− ξ

2

)
+

(
f3 − f2

2

)(
1 + ξ

2

)
= cξ + d. (2.6)

1or, equivalently, enriched linear, as discussed above and in the following
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behaves similarly, with c = a. However, partial derivatives in ξ, η
remain constant along the corresponding differentiation direction 2.

The general quadrilateral domain. The interpolation functions
introduced above for the natural quadrilateral may be profitably em-
ployed in defining a coordinate mapping between a general quadrangu-
lar domain – see Fig. 2.2a – and its reference counterpart, see Figures
2.1 and 2.2b.

In particular, we first define the ξ i 7→ x i coordinate mapping for
the four vertices3 alone, where ξ, η are the reference (or natural, or
elementary) coordinates and x, y are their physical counterpart.

Then, a mapping for the inner points may be derived by interpola-
tion, namely

x = m
(
ξ
)

=

4∑

i=1

Ni

(
ξ
)

x i (2.7)

The availability of an inverse m−1 : x 7→ ξ mapping is not granted; in
particular, a closed form representation for such inverse is not generally
available4.

In the absence of an handy inverse mapping function, it is conve-
nient to reinstate the interpolation procedure obtained for the natural
domain, i.e.

f(ξ, η)
def
=
∑

i

Ni(ξ, η)fi (2.8)

The four fi nodal values are interpolated based on the natural ξ, η
coordinates of an inner P point, and not as a function of its physical
x, y coordinates, that are never promoted to the independent variable
role.

As already mentioned, the m mapping behaves linearly along η =const.
and ξ =const. one dimensional subdomains, and in particular along

2The relevance of such partial derivative orders will appear clearer to the reader
once the strain field will have been derived in paragraph XXX.

3The condensed notation ξ i ≡ (ξi, ηi), x i ≡ (xi, yi) for coordinate vectors is
employed.

4Inverse relations are derived in [2], which however are case-defined and based on
a selection table; for a given x̄ physical point, however, Newton-Raphson iterations
rapidly converge to the ξ̄ = m−1 ( x̄ ) solution if the centroid is chosen for algorithm
initialization, see Section XXX
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Figure 2.2: Quadrilateral general domain, (a), and its reference coun-
terpart (b). If the general quadrangle is defined within a spatial envi-
ronment, and not as a figure lying on the xy plane, limited zi offsets are
allowed at nodes with respect to such plane, which are not considered
in Figure.
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the quadrangle edges5; the inverse mapping m−1 exists along these line
segments under the further condition that their length is nonzero6, and
it is a linear function7 . Being a composition of linear functions, the
interpolation function f( m−1(x, y)) is also linear along the aforemen-
tioned subdomains, and in particular along the quadrangle edges.

The directional derivatives of f with respect to x or y are obtained
based the indirect relation

[
∂f
∂ξ
∂f
∂η

]
=

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]

︸ ︷︷ ︸
J ′(ξ,η)

[
∂f
∂x
∂f
∂y

]
(2.9)

.
The function derivatives with respect to ξ, η are obtained as

[
∂f
∂ξ
∂f
∂η

]
=
∑

i

[
∂Ni
∂ξ
∂Ni
∂η

]
fi. (2.10)

The transposed Jacobian matrix of the mapping function that appears
in 2.9 is

J ′(ξ, η) =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
(2.11)

=
∑

i

([
∂Ni
∂ξ 0
∂Ni
∂η 0

]
xi +

[
0 ∂Ni

∂ξ

0 ∂Ni
∂η

]
yi

)
(2.12)

If the latter matrix is assumed nonsingular – condition, this, that
pairs the bijective nature of the m mapping, equation 2.9 may be

5see paragraph XXX
6The case exists of an edge whose endpoints are superposed, i.e. the edge col-

lapses to a point.
7A constructive proof may be defined for each edge by retrieving the non-uniform

amongst the ξ, η coordinates, namely λ, as the ratio

λ = 2
(xQ − xi)(xj − xi) + (yQ − yi)(yj − yi)

(xj − xi)2 + (yj − yi)2
− 1,

where Q is a generic point along the edge, and i,j are the two subdomain endpoints
at which λ equates −1 and +1, respectively. A similar function may be defined for
any constant ξ, η segment.
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inverted, thus leading to the form

[
∂f
∂x
∂f
∂y

]
=
(

J ′
)−1

[
. . . ∂Ni

∂ξ . . .

. . . ∂Ni
∂η . . .

]



...
fi
...


 , (2.13)

where the inner mechanics of the matrix-vector product are appointed
for the Eq. 2.10 summation.

2.1.2 Gaussian quadrature rules for some relevant do-
mains.

Reference one dimensional domain. The gaussian quadrature
rule for approximating the definite integral of a f(ξ) function over
the [−1, 1] reference interval is constructed as the customary weighted
sum of internal function samples, namely

∫ 1

−1
f(ξ)dξ ≈

n∑

i=1

f(ξi)wi; (2.14)

Its peculiarity is to employ location-weight pairs (ξi, wi) that are
optimal with respect to the polynomial class of functions. Nevertheless,
such choice has revealed itself to be robust enough for for a more general
employment.

Let’s consider a m-th order polynomial

p(ξ)
def
= amξ

m + am−1ξ
m−1 + . . .+ a1ξ + a0

whose exact integral is

∫ 1

−1
p(ξ)dξ =

m∑

j=0

(−1)j + 1

j + 1
aj

The integration residual between the exact definite integral and the
weighted sample sum is defined as

r (aj , (ξi, wi))
def
=

n∑

i=1

p(ξi)wi −
∫ 1

−1
p(ξ)dξ (2.15)
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The optimality condition is stated as follows: the quadrature rule
involving n sample points (ξi, wi), i = 1 . . . n is optimal for the m-
th order polynomial if a) the integration residual is null for general
aj values , and b) such condition does not hold for any lower-order
sampling rule.

Once observed that the zero residual requirement is satisfied by any
sampling rule if the polynomial aj coefficients are all null, condition a)
may be enforced by imposing that such zero residual value remains
constant with varying aj terms, i.e.

{
∂r (aj , (ξi, wi))

∂aj
= 0, j = 0 . . .m (2.16)

A system of m + 1 polynomial equations of degree8 m + 1 is hence
obtained in the 2n (ξi, wi) unknowns; in the assumed absence of re-
dundant equations, solutions do not exist if the constraints outnumber
the unknowns, i.e. m > 2n− 1. Limiting our discussion to the thresh-
old condition m = 2n−1, an attentive algebraic manipulation of Eqns.
2.16 may be performed in order to extract the (ξi, wi) solutions, which

8the (m+ 1)-th order wmξ
m term appears in equations
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n ξi wi

1 0 2

2 ± 1√
3

1

3
0 8

9

±
√

3
5

5
9

4
±
√

3
7 − 2

7

√
6
5

18+
√

30
36

±
√

3
7 + 2

7

√
6
5

18−
√

30
36

Table 2.1: Integration points for the lower order gaussian quadrature
rules.

are unique apart from the pair permutations9.
Eqns. 2.16 solutions are reported in Table 2.1 for quadrature rules

with up to n = 4 sample points10.

9 In this note, location-weight pairs are obtained for the gaussian quadrature
rule of order n = 2, aiming at illustrating the general procedure. The general
m = 2n− 1 = 3rd order polynomial is stated in the form

p(ξ) = a3ξ
3 + a2ξ

2 + a1ξ + a0,

∫ 1

−1

p(ξ)dξ =
2

3
a2 + 2a0,

whereas the integral residual is

r = a3

(
w1ξ

3
1 + w2ξ

3
2

)
+a2

(
w1ξ

2
1 + w2ξ

2
2 −

2

3

)
+a1 (w1ξ1 + w2ξ2)+a0 (w1 + w2 − 2)

Eqns 2.16 may be derived as
0 = ∂r

∂a3
= w1ξ

3
1 + w2ξ

3
2 (e1)

0 = ∂r
∂a2

= w1ξ
2
1 + w2ξ

2
2 − 2

3
(e2)

0 = ∂r
∂a1

= w1ξ1 + w2ξ2 (e3)

0 = ∂r
∂a0

= w1 + w2 − 2 (e4)

which are independent of the aj coefficients.
By composing

(
e1 − ξ2

1e3

)
/(w2ξ2) it is obtained that ξ2

2 = ξ2
1 ; e2 may then be

written as (w1 + w2)ξ2
1 = 2/3, and then as 2ξ2

1 = 2/3, according to e4. It derives
that ξ1,2 = ±1/

√
3. Due to the opposite nature of the roots, e3 implies w2 = w1,

relation, this, that turns e4 into 2w1 = 2w2 = 2, and hence w1,2 = 1 .
10see https://pomax.github.io/bezierinfo/legendre-gauss.html for higher
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It is noted that the integration points are symmetrically distributed
with respect to the origin, and that the function is never sampled at
the {−1, 1} extremal points.

General one dimensional domain. The extension of the one di-
mensional quadrature rule from the reference domain [−1, 1] to a gen-
eral [a, b] domain is pretty straightforward, requiring just a change of
integration variable – i.e. a mapping function x = m(ξ) s.t. a = m(−1)
and b = m(1) – to obtain the following

∫ b

a
f(x)dx =

∫ 1

−1
f (m(ξ))

dm

dξ
dξ ≈

n∑

i=1

f (m(ξ))
dm

dξ

∣∣∣∣
ξ=ξi

wi. (2.17)

Such a mapping function may be conveniently defined along the same
lines as the weight (or shape) function based interpolation, thus ob-
taining

m(x) =

(
1− ξ

2

)

︸ ︷︷ ︸
N1

a+

(
1 + ξ

2

)

︸ ︷︷ ︸
N2

b.

The first order derivative may be evaluated as

dm

dξ
=
dN1

dξ
a+

dN2

dξ
b =

b− a
2

and it is constant along the interval, so that it may be collected outside
of the summation, thus leading to

∫ b

a
f(x)dx ≈ b− a

2

n∑

i=1

f

(
b+ a

2
+
b− a

2
ξi

)
wi. (2.18)

Reference quadrangular domain. A quadrature rule for the ref-
erence quadrangular domain of Figure 2.1a may be derived by nesting
the quadrature rule defined for the reference interval, see Eqn. 2.14,
thus obtaining

∫ 1

−1

∫ 1

−1
f (ξ, η) dξdη ≈

p∑

i=1

q∑

j=1

f (ξi, ηj)wiwj (2.19)

order gaussian quadrature rule sample points.
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where (ξi, wi) and (ηj , wj) are the coordinate-weight pairs of the two
quadrature rules of p and q order, respectively, employed for spanning
the two coordinate axes. The equivalent notation

∫ 1

−1

∫ 1

−1
f (ξ, η) dξdη ≈

pq∑

l=1

f
(
ξ l
)
wl (2.20)

emphasises the characteristic nature of the pq point/weight pairs for
the domain and for the quadrature rule employed; a general integer
bijection11 {1 . . . pq} ↔ {1 . . . p} × {1 . . . q}, l ↔ (i, j) may be utilized
to formally derive the two-dimensional quadrature rule pairs

ξ l = (ξi, ηj) , wl = wiwj , l = 1 . . . pq (2.21)

from their uniaxial counterparts.

General quadrangular domain. The rectangular infinitesimal area
dAξη = dξdη in the neighborhood of a ξP , ηP location, see Figure 2.2b,
is mapped to the quadrangle of Figure 2.2a, which is composed by the
two triangular areas

dAxy =
1

2!

∣∣∣∣∣∣

1 x (ξP , ηP ) y (ξP , ηP )
1 x (ξP + dξ, ηP ) y (ξP + dξ, ηP )
1 x (ξP + dξ, ηP + dη) y (ξP + dξ, ηP + dη)

∣∣∣∣∣∣
+

+
1

2!

∣∣∣∣∣∣

1 x (ξP + dξ, ηP + dη) y (ξP + dξ, ηP + dη)
1 x (ξP , ηP + dη) y (ξP , ηP + dη)
1 x (ξP , ηP ) y (ξP , ηP )

∣∣∣∣∣∣
. (2.22)

11 e.g.

{i− 1; j − 1} = (l − 1) mod (p, q), l − 1 = (j − 1)q + (i− 1)

where the operator

{an; . . . ; a3; a2; a1} = mmod (bn, . . . , b3, b2, b1)

consists in the extraction of the n least significant ai digits of a mixed radix repre-
sentation of the integer m with respect to the sequence of bi bases, with i = 1 . . . n.
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The determinant formula for the area of a triangle, shown below along
with its n-dimensional symplex hypervolume generalization,

A =
1

2!

∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
, H =

1

n!

∣∣∣∣∣∣∣∣∣

1 x 1

1 x 2
...

...
1 x n+1

∣∣∣∣∣∣∣∣∣
(2.23)

has been employed above.
By operating a local multivariate linearization of the 2.22 matrix

terms, the relation

dAxy ≈
1

2!

∣∣∣∣∣∣

1 x y
1 x+ x,ξdξ y + y,ξdξ
1 x+ x,ξdξ + x,ηdη y + y,ξdξ + y,ηdη

∣∣∣∣∣∣
+

+
1

2!

∣∣∣∣∣∣

1 x+ x,ξdξ + x,ηdη y + y,ξdξ + y,ηdη
1 x+ x,ηdη y + y,ηdη
1 x y

∣∣∣∣∣∣

is obtained, where x, y, x,ξ, x,η, y,ξ, and y,η are the x, y functions and
their first order partial derivatives, sampled at the (ξP , ηP ) point; in-
finitesimal terms of order higher than dξ, dη are neglected.

After some matrix manipulations12, the following expression is ob-

12 In the first determinant, the second row is subtracted from the third one,
and the first row is subtracted from the second one. The dξ, dη factors are then
collected from the second and the third row respectively. In the second determinant,
the second row is subtracted from the first one, and the third row is subtracted from
the second one. The dξ, dη factors are then collected from the first and the second
row respectively. We now have

dAxy =
1

2

∣∣∣∣∣∣
1 x y
0 x,ξ y,ξ
0 x,η y,η

∣∣∣∣∣∣ dξdη +
1

2

∣∣∣∣∣∣
0 x,ξ y,ξ
0 x,η y,η
1 x y

∣∣∣∣∣∣ dξdη
The first column of both the determinants contains a single, unitary, nonzero term,
whose row and column indexes are even once added up; the determinants of the
associated complementary minors hence equate their whole matrix counterpart. We
hence obtain

dAxy =
1

2

∣∣∣∣x,ξ y,ξ
x,η y,η

∣∣∣∣ dξdη +
1

2

∣∣∣∣x,ξ y,ξ
x,η y,η

∣∣∣∣ dξdη
from which Eq.2.24 may be straightforwardly derived.
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tained

dAxy =

∣∣∣∣
x,ξ y,ξ
x,η y,η

∣∣∣∣
︸ ︷︷ ︸
|JT(ξP ,ηP )|

dAξη (2.24)

that equates the ratio of the mapped and of the reference areas to the
determinant of the transformation (transpose) Jacobian matrix13.

After the preparatory passages above, we obtain
∫∫

Axy

g(x, y)dAxy =

∫∫ 1

−1
g (x (ξ, η) , y (ξ, η)) |J(ξ, η)| dξdη, (2.25)

thus reducing the quadrature over a general domain to its reference
domain counterpart, which has been discussed in the paragraph above.

Based on Eqn. 2.20, the quadrature rule

∫∫

Axy

g( x )dAxy ≈
pq∑

l=1

g
(

x
(
ξ l
)) ∣∣J( ξ l)

∣∣wl (2.26)

is derived, stating that the definite integral of a g integrand over a
quadrangular domain pertaining to the physical x, y plane (x, y are di-
mensional quantities, namely lengths) may be approximated as follows:

1. a reference-to-physical domain mapping is defined, that is based
on the vertex physical coordinate interpolation;

2. the function is sampled at the physical locations that are the
images of the Gaussian integration points previously obtained
for the reference domain;

3. a weighted sum of the collected samples is performed, where the
weights consist in the product of i) the adimensional wl Gauss
point weight (suitable for integrating on the reference domain),
and ii) a dimensional area scaling term, that equals the determi-
nant of the transformation Jacobian matrix, locally evaluated at
the Gauss points.

13The Jacobian matrix for a general ξ 7→ x mapping is in fact defined according
to

[J( ξ P )]ij
def
=

∂xi
∂ξj

∣∣∣∣
ξ= ξ P

i, j = 1 . . . n

being i the generic matrix term row index, and j the column index
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2.2 Basic formulation for plates and shells

A necessary condition for applying the plate/shell model framework
to a deformable body is that a geometrical midsurface might be, if
only loosely, recognized for such a body. Then, an iterative refinement
procedure14 may be applied to such tentative midsurface guess.

Then, material should be observed as [piecewise-]homogeneous, or
slowly varying in mechanical properties while moving at a fixed distance
from the midsurface.

Of the two outer surfaces, one has to be defined as the upper or top
surface, whereas the other is named lower ot bottom, thus implicitly
orienting the midsurface normal towards the top.

Finally, the body should result fully determined based on a) its
midsurface, b) its pointwise thickness, and c) the through-thickness
distribution of the constituent materials.

Actually, the geometrical midsurface is of little significance if the
material distribution is not symmetric15; such midsurface, in fact, ex-
hibits no relevant properties in general. Its definition is nevertheless
pretty straighforward.

In the present treatise, a more general reference surface definition is
preferred to its median geometric counterpart; in particular, an offset
term is considered that pointwisely shifts the geometric midsurface with
respect to the reference surface. A positive offsets shifts the midsurface
towards the top.

With the introduction of the offset term, the reference surface may
be arbitrarily positioned with respect to the body itself; as an example,
an offset set equal to plus or minus half the thickness makes the refer-
ence surface correspondent to the bottom or top surfaces, respectively.

Such offset term becomes fundamental in the Finite Element (FE)
shell implementation, where, in fact, the reference plane is uniquely
defined by the position of the nodes, whereas the offset arbitrarily
shifts the geometrical midsurface.

14Normal segments may be cast from each point along the midsurface, that end
on the outer body surfaces. The midpoint locus of these segments redefines the
midsurface itself.

15If the unsimmetric laminate is composed by isotropic layers, a reference plane
may be obtained for which the B membrane-to-bending coupling matrix vanishes;
a similar condition may not be verified in the presence of orthotropic layers.
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In the case of limited16 curvatures, and for considerations whose
scope is local, the tangent reference plane may be employed in place of
the possibly curve reference surface, thus locally reducing the general
shell treatise to its planar, plate counterpart.

The P displacement components may be defined as a function of
the motion of its projection on the reference plane Q. Such Q point is
named reference point for the through-thickness segment it belongs to.

uP = u+ z (1 + ε̌z) sinϕ (2.27)

vP = v − z (1 + ε̌z) sin θ (2.28)

wP = w + z ((1 + ε̌z) cos(ϕ) cos(θ)− 1) (2.29)

The ε̌z average z strain term is defined based on the accumulation
of the Poisson shrinkage (or elongation) along the PQ segment, i.e.

ε̌z(z) =
1

z

∫ z

0
εzdς (2.30)

=
1

z

∫ z

0
− ν

1− ν (εx + εy) dς (2.31)

The stress component σz which is normal to the reference surface
is assumed to be either zero or negligible17.

Such displacement components may be linarized with respect to the
small rotations and small εz strain hypotheses, thus obtaining

16with respect to thickness
17Such assumption is coherent with the free surface conditions at the top and the

bottom skins, and with the moderate thickness of the elastic body, that allows only
a narrow deviation from the boundary values.

In fact, the equilibrium of a partitioned, through-thickness material segment re-
quires that

σz(z) = −
∫ z

−h/2+o

∂τzx
∂x

+
∂τyz
∂y

dz = +

∫ +h/2−o

z

∂τzx
∂x

+
∂τyz
∂y

dz,

where τzx, τyz are the interlaminar, out-of-plane shear stress components, whose
in-plane gradient is limited.
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γ̄zx

z

x

w

u

−φ
y

z

z (1 + ε̌z)

−zφh/2− o

h/2 + o

γ̄yz

z

y

w

+θ

x

z

z (1 + ε̌z)

+zθ
h/2− o

h/2 + o

zx, ⊥ y plane

yz, ⊥ x plane

Q

P

Q

P

uP

v

vP

undeformed deformed
config. config.

∂w
∂x

∂w
∂y

Figure 2.3: Relevant dimensions for describing the deformable plate
kinematics.
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uP = u+ zϕ (2.32)

vP = v − zθ (2.33)

wP = w (2.34)

According to such linearized expression, the kinematic of the P
points originally18 laying on a through-thickness segment that is normal
at Q to the reference surface may be described as that of a rigid body.
The natural shear related warping is either excluded or neglected, along
with the motion of the P points along the segment due to ε̌z.

Also, the behaviour of such a segment is coherent with its rigid
body modeling from the external loads point of view; in particular the
external actions act on the plate deformable body only through their
through-thickness resultants, and no stress/strain components or work
are associated by the shell framework to wall squeezing actions, e.g.
laminations.

Relation between the normal displacement x, y gradient (i.e. the
deformed plate slope), the rotations and the out-of-plane, interlaminar,
averaged shear strain components.

∂w

∂x
= γ̄zx − ϕ (2.35)

∂w

∂y
= γ̄yz + θ (2.36)

Strains at point P.

εx =
∂uP
∂x

=
∂u

∂x
+ z

∂ϕ

∂x
(2.37)

εy =
∂vP
∂y

=
∂v

∂y
− z ∂θ

∂y
(2.38)

γxy =
∂uP
∂y

+
∂vP
∂x

(2.39)

=

(
∂u

∂y
+
∂v

∂x

)
+ z

(
+
∂ϕ

∂y
− ∂θ

∂x

)
(2.40)

18i.e. in the undeformed configuration
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Generalized plate strains: membrane strains

ε̄ =




∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x


 =




ε̄x
ε̄y
γ̄xy


 (2.41)

Generalized plate strains: curvatures.

κ =




+∂ϕ
∂x

− ∂θ
∂y

+∂ϕ
∂y − ∂θ

∂x


 =




κx
κy
κxy


 (2.42)

Compact form for the strain components at P.

ε = ε̄ + z κ (2.43)

Hook law for an isotropic material, under plane stress conditions.

D =
E

1− ν2




1 ν 0
ν 1 0
0 0 1−ν

2


 (2.44)

Normal components for stress and strain, the latter for the isotropic
material case only.

σz = 0 (2.45)

εz = − ν

1− ν (εx + εy) (2.46)

Stresses at P.
σ = D ε = D ε̄ + zD κ (2.47)

Membrane (direct and shear) stress resultants (stress flows).

q =




qx
qy
qxy


 =

∫

h
σ dz (2.48)

=

∫

h
D dz

︸ ︷︷ ︸
A

ε̄ +

∫

h
D zdz

︸ ︷︷ ︸
B

κ (2.49)
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c b d

(b)

(c) (d)

(a)

x

y

θ
φ

Figure 2.4: Positive κxy torsional curvature for the plate element.
Subfigure (a) shows the positive γxy shear strain at the upper surface,
the (in-plane) undeformed midsurface, and the negative γxy at the
lower surface; the point of sight related to subfigures (b) to (d) are also
evidenced. θ and ϕ rotation components decrease with x and increase
with y, respectively, thus leading to positive κxy contributions. As
shown in subfigures (c) and (d), the torsional curvature of subfigure (b)
evolves into two anticlastic bending curvatures if the reference system
is aligned with the square plate element diagonals, and hence rotated
by 45◦ with respect to z.
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∆y
∆x

h
Q

z

∆y

Q

z

qx∆y
qxy∆y

σx τxy

mxy∆y

mx∆y

Figure 2.5: XXX

Bending and torsional moment stress resultants (moment flows).

m =




mx

my

mxy


 =

∫

h
σ zdz (2.50)

=

∫

h
D zdz

︸ ︷︷ ︸
B≡B T

ε̄ +

∫

h
D z2dz

︸ ︷︷ ︸
C

κ (2.51)

Cumulative generalized strain - stress resultants relations for the
plate (or for the laminate)

(
q

m

)
=

(
A B

B T C

)(
ε̄
κ

)
(2.52)

The A and the C matrices characterize the plate stiffness with
respect to membrane and flexo-torsional load case families respectively;
the membrane/flexo-torsional coupling stiffness term B vanishes for
symmetric laminates if the reference surface is made coincident with
the midsurface.

Hook law for the orthotropic material in plane stress conditions,
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with respect to principal axes of orthotropy;

D 123 =




E1
1−ν12ν21

ν21E1
1−ν12ν21

0
ν12E2

1−ν12ν21

E2
1−ν12ν21

0

0 0 G12


 (2.53)




σ1

σ2

τ12


 = T 1




σx
σy
τxy







ε1
ε2
γ12


 = T 2




εx
εy
γxy


 (2.54)

where

T 1 =




m2 n2 2mn
n2 m2 −2mn
−mn mn m2 − n2


 (2.55)

T 2 =




m2 n2 mn
n2 m2 −mn
−2mn 2mn m2 − n2


 (2.56)

α is the angle between 1 and x;

m = cos(α) n = sin(α) (2.57)

The inverse transformations may be obtained based on the relations

T−1
1 (+α) = T 1(−α) T−1

2 (+α) = T 2(−α) (2.58)

Finally

σ = D ε D ≡ D xyz = T−1
1 D 123 T 2 (2.59)

Notes:

• Midplane is ill-defined if the material distribution is not symmet-
ric; the geometric midplane (i.e. the one obtained by ignoring the
material distribution) exhibits no relevant properties in general.
Its definition is nevertheless pretty straighforward.

• If the unsimmetric laminate is composed by isotropic layers, a
reference plane may be obtained for which the B membrane-to-
bending coupling matrix vanishes; a similar condition may not
be verified in the presence of orthotropic layers.
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• In the present contribution, the reference plane is preferred to the
usual geometric midplane for expressing the displacement field,
even in the case of homogeneous material or symmetric laminates;
in FE shell element implementation, in fact, the reference plane
is uniquely defined by the position of the nodes, whereas an offset
term may arbitrarily shift the geometrical midsurface.

• Thermally induced distortion is not self-compensated in an un-
symmetric laminate even if the temperature is held constant
through the thickness.
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F

l = b

m∗
x = Fl

b

my ≈ 0
ky ≈ 0ky ≈ −νk∗x
my ≈ νm∗

x

xy

anticlastic
curvature

unconstrained
anticlastic
curvature

constrained

bilateral

unilateral

·
m∗

x
, ·
k∗
x

1 2 3 4
x
b0

1

−ν

+ν

mx

kx

+νmx

my

ky

·
m∗

x
, ·
k∗
x

1 2 4
x
b0

1

−ν

+ν

mx

kx

+νmx

my

ky

contact

contact

k∗x = 12Fl
Ebh3 a = 3b

h = b
40

z

Figure 2.6: The not-so-trivial four point bending case. Moment fluxes
and curvatures are sampled at the specimen midwidth, whereas they
may vary while moving towards the flanks; the average value of mx

along the width must in fact coincide with m∗x in correspondence with
the load span.
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2.3 The bilinear isoparametric shear-deformable
shell element

This is a four-node, thick-shell element with global displace-
ments and rotations as degrees of freedom. Bilinear inter-
polation is used for the coordinates, displacements and the
rotations. The membrane strains are obtained from the
displacement field; the curvatures from the rotation field.
The transverse shear strains are calculated at the middle
of the edges and interpolated to the integration points. In
this way, a very efficient and simple element is obtained
which exhibits correct behavior in the limiting case of thin
shells. The element can be used in curved shell analysis
as well as in the analysis of complicated plate structures.
For the latter case, the element is easy to use since connec-
tions between intersecting plates can be modeled without
tying. Due to its simple formulation when compared to the
standard higher order shell elements, it is less expensive
and, therefore, very attractive in nonlinear analysis. The
element is not very sensitive to distortion, particularly if
the corner nodes lie in the same plane. All constitutive
relations can be used with this element.

— MSC.Marc 2013.1 Documentation, vol. B, Element library.

2.3.1 Element geometry

Once recalled the required algebraic paraphernalia, the definition of a
bilinear quadrilateral shear-deformable isoparametric shell element is
straightforward.

The quadrilateral element geometry is defined by the position in
space of its four vertices, which constitute the set of nodal points, or
nodes, i.e. the set of locations at which field components are primarily,
parametrically, defined; interpolation is employed in deriving the field
values elsewhere.

A suitable interpolation scheme, named bilinear, has been intro-
duced in paragraph 2.1.1; the related functions depend on the normal-
ized coordinate pair ξ, η ∈ [−1, 1] that spans the elementary quadrilat-
eral of Figure 2.1.
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A global reference system OXY Z is employed for concurrently deal-
ing with multiple elements (i.e. at a whole model scale); a more conve-
nient, local Cxyz reference system, z being locally normal to the shell,
is used when a single element is under scrutiny – e.g. in the current
paragraph.

Nodal coordinates define the element initial, undeformed, geome-
try19 of the portion of shell reference surface pertaining to the currente
element; spatial coordinates for each other element point may be re-
trieved by interpolation based on the associated pair of natural ξ, η
coordinates.

In particular, the C centroid is the image within the physical space
of the ξ = 0, η = 0 natural coordinate system origin.

The in-plane orientation of the local Cxyz reference system is some-
what arbitrary and implementation-specific; the MSC.Marc approach
is used as an example, and it is described in the following. The in-plane
x, y axes are tentatively defined20 based on the physical directions that
are associated with the ξ, η natural axes, i.e. the oriented segments
spanning a) from the midpoint of the n4-n1 edge to the midpoint of
the n2-n3 edge, and b) from the midpoint of the n1-n2 edge to the
midpoint of the n3-n4 edge, respectively; however, these two tentative
axes are not mutually orthogonal in general. The mutual Cxy angle is
then amended by rotating those interim axes with respect to a third,
binormal axis Cz, while preserving their initial bisectrix.

The resulting quadrilateral shell element is in fact initially flat,
apart from a (suggestedly limited) anticlastic curvature of the element
diagonals, that is associated to the quadratic ξη term of the interpo-
lation functions. The curve nature of a thin wall midsurface is thus
represented by recurring to a plurality of basically flat, but mutually
angled elements.

19They are however continuosly updated within most common nonlinear analysis
frameworks, where initial usually refers to the last computed, aka previous step of
an iterative scheme.

20The MSC.Marc element library documentation defines them as a normalized
form of the (

∂X

∂ξ
,
∂Y

∂ξ
,
∂Z

∂ξ
,

)∣∣∣∣
ξ=0,η=0

,

(
∂X

∂η
,
∂Y

∂η
,
∂Z

∂η
,

)∣∣∣∣
ξ=0,η=0

,

vectors, which are evaluated at the centroid. The two definitions may be proved
equivalent based on the bilinear interpolation properties.
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2.3.2 Displacement and rotation fields

The element degrees of freedom consist in the displacements and the
rotations of the four quadrilateral vertices, i.e. nodes.

By interpolating the nodal values, displacement and rotation func-
tions may be derived along the element as



u(ξ, η)
v(ξ, η)
w(ξ, η)


 =

4∑

i=1

Ni(ξ, η)



ui
vi
wi


 (2.60)



θ(ξ, η)
ϕ(ξ, η)
ψ(ξ, η)


 =

4∑

i=1

Ni(ξ, η)



θi
ϕi
ψi


 (2.61)

with i = 1 . . . 4 cycling along the element nodes.

2.3.3 Strains

By recalling Eqn. 2.13, we have e.g.

[∂u
∂x
∂u
∂y

]
=
(

J ′
)−1

[
. . . ∂Ni

∂ξ . . .

. . . ∂Ni
∂η . . .

]

︸ ︷︷ ︸
L (ξ,η)




...
ui
...


 (2.62)

for the x-oriented displacement component; the isoparametric differ-
ential operator L (ξ, η) is also defined that extract the x, y directional
derivatives from the nodal values of a given field component.

We now collect within the five column vectors

u =




...
ui
...


 , v =




...
vi
...


 , w =




...
wi
...


 , θ =




...
θi
...


 , ϕ =




...
ϕi
...


 (2.63)

the nodal degrees of freedom; the ψ vector associated with the drilling
degree of freedom is omitted.

A block defined Q(ξ, η) matrix is thus obtained that cumulatively
relates the in-plane displacement component derivatives to the associ-
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ated nodal values



∂u
∂x
∂u
∂y
∂v
∂x
∂v
∂y


 =

[
L (ξ, η) 0

0 L (ξ, η)

]

︸ ︷︷ ︸
Q (ξ,η)

[
u
v

]
(2.64)

An equivalent relation may then be obtained for the rotation field




∂θ
∂x
∂θ
∂y
∂ϕ
∂x
∂ϕ
∂y


 = Q (ξ, η)

[
θ
ϕ

]
(2.65)

By making use of two auxiliary matrices H† and H‡ that collect
the {0,±1} coefficients in Eqns. 2.41 and 2.42, we obtain



ε̄x
ε̄y
γ̄xy


 =




+1 0 0 0
0 0 0 +1
0 +1 +1 0




︸ ︷︷ ︸
H †




∂u
∂x
∂u
∂y
∂v
∂x
∂v
∂y


 = H †Q (ξ, η)

[
u
v

]
(2.66)



κx
κy
κxy


 =




0 0 +1 0
0 −1 0 0
−1 0 0 +1




︸ ︷︷ ︸
H ‡




∂θ
∂x
∂θ
∂y
∂ϕ
∂x
∂ϕ
∂y


 = H ‡Q (ξ, η)

[
θ
ϕ

]

(2.67)

The in plane strain tensor at each ξ, η, z point along the element
may then be derived according to Eqn. 2.43 as a (linear) function of
the nodal degrees of freedom

ε (ξ, η, z) =
[

H †Q (ξ, η) 0 zH ‡Q (ξ, η)
]




u
v
w
θ
ϕ




(2.68)
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where the transformation matrix is block-defined by appending to the
3x8 block introduced in Eqn. 2.66 a 3x3 zero block (the w out-of-plane
displacements have no influence on the in-plane strain components),
and then the 3x8 block presented in Eqn. 2.67.

By separating the terms of the above matrix based on their order
with respect to z, we finally have.

ε (ξ, η, z) =
(

B 0(ξ, η) + B 1(ξ, η)z
)

d (2.69)

The out-of-plane shear strain components, as defined in Eqns. 2.35
and 2.36, become

[
γ̄zx
γ̄yz

]
= L (ξ, η) w +

[
0 + N (ξ, η)

−N (ξ, η) 0

] [
θ
ϕ

]
, (2.70)

and thus, by employing a notation consistent with 2.69,

[
γ̄zx
γ̄yz

]
=

[
0 0 L (ξ, η)

0
−N (ξ, η)

N (ξ, η)

0

]

︸ ︷︷ ︸
B γ̄(ξ,η)

d (2.71)

where the transformation matrix that derives the out-of-plane, inter-
laminar strains from the nodal degrees of freedom vector is constituted
by five 2× 4 blocks.
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2.3.4 Stresses

The plane stress relations discussed in Paragraph 2.2, see Eqns. 2.45,
may be employed in deriving the in-plane stress components from the
associated strains.

The Gzx, Gyz material shear moduli relate the out-of-plane shear
stresses to the associated strain components only if the latter are as-
sumed constant along the thickness, and thus equal to the average
values γ̄zx, γ̄yz. A gross approximation, this, that may be overcome
by extending the Jourawsky equilibrium considerations introduced for
beams, to the plate realm. The actual treatise is however both com-
plicated and, still, inexact21.

In the case of homogeneous, linearly elastic plate material, an en-
ergetically consistent material law for the out-of-plane shear may be
obtained by scaling the pointwise stress/strain relation22

[
τzx
τyz

]
= D γ

[
γzx
γyz

]
, (2.72)

by a 6/5 factor, thus obtaining the emended, average out-of-plane shear
stress components [

τ̄zx
τ̄yz

]
=

(
6

5
D γ

)

︸ ︷︷ ︸
D̄ γ

[
γ̄zx
γ̄yz

]
, (2.73)

Such relation is energetically consistent in the sense of the following
equality

1

2

∫

z
γzxτzx + γyzτyzdz =

1

2

[
γ̄zx
γ̄yz

]> [
τ̄zx
τ̄yz

]
h (2.74)

=
1

2

[
γ̄zx
γ̄yz

]>
D̄ γ

[
γ̄zx
γ̄yz

]
h. (2.75)

21See e.g. MSC.Marc 2013.1 Documentation, Vol. A, pp. 433-436
22 As an example, the definition for D γ in the case of an orthotropic material

whose out-of-plane shear moduli are Gz1 and G2z is

D γ =

[
n2Gz1 +m2G2z mnGz1 −mnG2z

mnGz1 −mnG2z m2Gz1 + n2G2z

]
,

where m = cosα, n = sinα, and α is the angle between the first in-plane principal
direction of ortotropy, namely 1, and the local x axis.
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The definition of the D̄ γ matrix for composite laminates, or in
the case of nonlinear material behaviour, is Beyond the Scope of the
Present Contribution (BSPC).

2.3.5 The element stiffness matrix.

In this paragraph, the elastic behaviour of the finite element under
scrutiny is derived.

The element is considered in its deformed configuration, being

d> =
[

u> v> w> θ > ϕ>
]

(2.76)

the Degree of Freedom (DOF) vector associated with such condition.
A virtual displacement field perturbs such deformed configuration;

as usual, those virtual displacements are infinitesimal, they do occur
while time is held constant, and, being otherwise arbitrary, they respect
the existing kinematic constraints.

Whilst, in fact, no external constrains are applied to the element,
the motion of the pertaining material points is prescribed based on a)
the assumed plate kinematics, and b) on the bilinear, isoparametric
interpolation laws that propagate the generalized nodal displacements
δ d towards the quadrilateral’s interior.

Since the element is supposed to elastically react to such deformed
configuration, a set of external actions

F> =
[

U> V> W> Θ> Φ>
]

(2.77)

is applied at nodes23 – one each DOF, that equilibrate the stretched
element reactions.

The nature of each F generalized force component is defined based
on the nature of the associated generalized displacement, such that the
overall virtual work they perform on any δ d motion is

δQe = δ d> F . (2.78)

The in-plane stress components that are induced by the d gener-
alized displacements equal

σ = D (z)
(

B 0(ξ, η) + B 1(ξ, η)z
)

d (2.79)

23There is no lack of generality in assuming the equilibrating external actions
applied at DOFs only, as discussed in Par. XXX below.
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according to the previous paragraphs. They perform (volumic) internal
work on the

δ ε =
(

B 0(ξ, η) + B 1(ξ, η)z
)
δ d (2.80)

virtual elongations.
The associate internal virtual work may be derived by integration

along the element volume, i.e. along the thickness, and along the
quadrilateral portion of reference surface that pertains to the element.
We thus obtain a first contribution to the overall internal virtual work

δQσi =

∫∫

A

∫

h
δ ε> σ dzdA

=

∫∫

A

∫

h

((
B 0 + B 1z

)
δ d
)>

D
(

B 0 + B 1z
)

d dzdA

= δ d>
[∫∫

A

∫

h

(
B>0 + B>1 z

)
D
(

B 0 + B 1z
)
dzdA

]
d

= δ d>K σ d (2.81)

Integration along i) the reference surface, and ii) along the thickness
is numerically performed through potentially distinct quadrature rules;
in particular, contributions are collected along the surface according
to the two points per axis (four points overall) Gaussian quadrature
formula introduced in Par. 2.1.2, whilst a (composite) Simpson rule is
applied in z, being each material layer sampled at its outer and middle
points.

The two points per axis quadrature rule is the lowest order rule that
returns an exact integral evaluation in the case of distortion-free24 ele-
ments, i.e. planar elements whose peculiar (parallelogram) shape also
determines a linear (vs. bilinear) isoparametric mapping. Since the
associated Jacobian matrix is constant with respect to ξ, η, the L ma-
trix defined in2.62 linearly varies with such isoparametric coordinates,
and so do the B 0, B 1 matrices. The integrand of Eqn. 2.81 is thus a
quadratic function of the ξ, η integration variables, as the Jacobian ma-
trix determinant that scales the physical and the natural infinitesimal
areas is also constant XXX.

A second contribution, which is due to the out-of-plane shear com-
ponents, may be obtained with similar considerations, and based on

24Many distinct definitions are associated to the element distortion concept, being
the one reported relevant for the specific dissertation passage.
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Eqns. 2.71 and 2.75; such contribution may be cast as

δQγi =

∫∫

A

∫

h
δ γ̄ > τ̄ dzdA

= δ d>
[
h

∫∫

A
B>γ D̄ γ B γdA

]
d

= δ d>K γ d . (2.82)

The overall internal work is thus

δQi = δQσi + δQγi

= δ d>
(

K σ + K γ

)
d

= δ d>K d . (2.83)

The principle of virtual works states that the external and the in-
ternal virtual works are equal for a general virtual displacement δ d ,
namely

δ d>G = δQe = δQi = δ d>K d , ∀δ d , (2.84)

if and only if the applied external actions G are in equilibrium with
the elastic reactions due to the displacements d ; the following equality
thus holds

G = K d ; (2.85)

the K stiffness matrix relates a deformed element configuration, which
is defined the the generalized displacement vector d , with the G gen-
eralized forces that have to be applied at the element nodes to keep
the element in such a stretched state.
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2.3.6 The shear locking flaw

Figure 2.17 rationalizes the shear locking phenomenon that plagues
the bilinear isoparametric element in its mimicking the pure bending
deformation modes, with both in-plane and out-of-plane constant cur-
vature.

An ingenious sampling and interpolation technique has been de-
veloped in [3] that overcomes the locking effect due to the spurious
transverse shear strain that develops when the element is subject to
out-of-plane bending. Such technique, however, does not correct the
element behaviour with respect to in-plane bending.

Eqn. 2.71 is employed in obtaining the tranverse shear strain com-
ponents γ̄zx and γ̄yz at the edge midpoints; the edge-aligned component
γ̄zîj is derived by projection along the îj direction, whereas the orthog-
onal component is neglected.

Figure 2.8a evidences that a null spurious tranverse shear is mea-
sured at the midpoint of the 12 and of the 41 edges when a constant,
out-of-plane curvature is locally enforced that develops along the 1̂2
and the 4̂1 directions, respectively. Such property holds for all edges.

In Figure 2.8b, a differential out-of-plane displacement is added to
the initial pure bending configuration of Fig. 2.8a, and in the absence
of further rotations at nodes; a proper (vs. spurious) tranverse shear
strain field is thus induced in the element, that the sampling scheme
should properly evaluate.

The edge aligned, transverse shear components sampled at the side
midpoints are then assigned to the whole edge, and in particular to
both its extremal nodes.

As shown in Figure 2.8b (and in the related enlarged view), two
independent transverse shear components γ̄z1̂2 and γ̄z4̂1 are associated
to the n1 node, which is taken as an example.

A vector is uniquely determined, whose projections on the 1̂2 and
4̂1 directions coincide with the associated transverse shear components;
the components of such vector with respect to the x, y axes define the
γ̄zx,n1 and γ̄yz,n1 tranverse shear terms at the n1 node.

Such procedure is repeated for all the element vertices; the obtained
nodal values for the transverse shear components are then interpolated
to the element interior, according to the costumary bilinear scheme.

Due to the peculiarity of the initial sampling points, the obtained
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Figure 2.7: Rationalization of the shear locking phenomenon.
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Figure 2.8: A tranverse shear sampling technique employed in the four-
noded isoparametric element for preventing shear locking in the out-
of-plane plate bending.
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tranverse shear strain field is amended with respect to the spurious
contribution that previously led to the shear locking effect; the usual
quadrature scheme may now be employed.

Equation 2.71 still formalizes the passage from nodal DOFs to the
out-of-plane shear field, since the procedure described in the present
paragraph may be easily cast in the form of a revised B γ matrix.

65



i
i

“dispensa˙2018˙master” — 2019/6/7 — 23:37 — page 66 — #67 i
i

i
i

i
i

2.4 Mass matrix for the finite element

2.4.1 Energy consistent formulation for the mass matrix

The Ω volume of material associated to a finite element is consid-
ered, along with the local, physical reference system (x, y, z), and its
isoparametric counterpart that, for the quadrilateral plate element un-
der scrutiny, is embodied by the (ξ, η, z) triad.

The vector shape function array

S (ξ, η, z) =



. . . ũi(ξ, η, z) . . .
. . . ṽi(ξ, η, z) . . .
. . . w̃i(ξ, η, z) . . .


 (2.86)

is defined based on the elementary motions ũ i ≡ [ũi, ṽi, w̃i]
> induced

to the element material points by imposing a unit value to the i-th
degree of freedom di, while keeping the others fixed.

The displacement field is then defined as a linear combination of
the elementary motions above, where the d element DOFs serve as
coefficients, namely

u (ξ, η, z) = S (ξ, η, z) d . (2.87)

Deriving with respect to time the equation above, the velocity field

u̇ (ξ, η, z) = S (ξ, η, z) ḋ (2.88)

is obtained as a function of the first variation in time of element DOFs.
Expression 2.88 is simplified by the constant-in-time nature of S .

The kinetic energy contribution associated to the deformable ele-
ment material points may be integrated, thus obtaining

Ekin =
1

2

∫∫∫

Ω
u̇> u̇ ρdΩ (2.89)

where ρ is the material mass density, that may vary across the domain.
By substituting the velocity field definition of Eq. 2.88 we obtain

Ekin =
1

2

∫∫∫

Ω

[
S ḋ

]> [
S ḋ

]
ρdΩ, (2.90)
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and finally

Ekin =
1

2
ḋ>
[∫∫∫

Ω
S> S ρdΩ

]
ḋ =

1

2
ḋ>M ḋ . (2.91)

The integral term that defines the M mass matrix is evaluated by
resorting to the same quadrature technique introduced for its stiffness
counterpart.

The actual nature of the mass matrix terms varies based on the
type of the DOFs that are associated to the term row and column; in
particular, the diagonal terms that are related to displacements and
rotations are dimensionally consistent with a mass and a moment of
inertia, respectively.

The mass matrix quantifies the inertial response of the finite ele-
ment; according to its definition

M =

∫∫∫

Ω
S> S ρdΩ, (2.92)

it is merely a function of the material density, and of the kinematic laws
that constrain the motion of the material particles within the element.

If a set of external (generalized) forces G is applied to the element
DOFs in the fictitious absence of elastic reactions, a purely inertial
response is expected. The ḋ vector defines the instantaneous first
derivative in time of the DOFs (i.e. nodal translational and rotational
velocities); the instantaneous power supplied by the external forces is
then evaluated as ḋ>G , that induces an equal time derivative of the
kinetic energy, quantified as 25

ḋ>G =
dEkin

dt
=
d

dt

(
1

2
ḋ>M ḋ

)

=
1

2

(
d̈>M ḋ + ḋ>M d̈

)

= ḋ>M d̈ .

25The symmetric matrix characterizing property

x>A y = y>A x ∀ x , y ∈ Rn

is used in deriving the last passage.
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Due to the general nature of ḋ , equality

G = M d̈ (2.93)

is implied, which points out the mass matrix role in transforming the
DOF vector second derivative in time (i.e. nodal translational and
rotational accelerations) into the generalized force components that
are to be applied in order to sustain such variation of motion.

2.4.2 Lumped mass matrix formulation

In a few applications, a diagonal form for the mass matrix is preferred
at the expense of a) a strict adherence to energy consistency, and b)
some arbitrariness in its definition.

The finite element volume is ideally partitioned into a set of influ-
ence domains, one each node. In the case of the four-noded quadrilat-
eral, material points whose ξ, η isoparametric coordinates fall within
the first, second, third and fourth quadrant are associated to nodes n3,
n4, n1 and n2, respectively; those distributed masses are then ideally
accumulated at the associated node.

A group of four concentrated nodal masses is thus defined, whose
motion is defined based on single translational DOFs, and not on the
plurality of weighted contributions that induces the nonzero, nondiag-
onal terms at the consistent mass matrix.

This undue material accumulation at the element periphery pro-
duces a spurious increase of the moment of inertia, condition, this, that
may only be worsened if (positive) rotational inertias are introduced
at nodes.

Those nodal rotational inertias are however required in associating
a bounded angular acceleration to unbalanced nodal torques; solution
methods based on the mass matrix inversion, e.g. explicit dynamic
procedures, are precluded otherwise. Since there is no consensus on
the quantification those inertial terms, the reader is addressed to spe-
cialized literature.

2.5 External forces

Energetically consistent external actions may be applied at the nodal
DOFs, that may be interpreted as concentrated forces and moments;
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their physical rationalization outside the discretized structure frame-
work – and in particular back to the underlying elastic continua theory
– is far from being trivial.

Surface tractions and volumetric loads are instead naturally tied
with the continuum formulation, and are usually employed in formal-
izing the load condition of structural components.

The present paragraph derives the equivalent nodal representation
of distributed actions acting on the domain of a single finite element;
the inverse relation provides a finite, distributed traction counterpart
to concentrated actions applied at the nodes of a discretized FE model.

The S set of elementary deformation modes that is introduced in
the context of the element mass matrix derivation, see Eqn. 2.86,
is employed to define a virtual displacement field within the element
domain based on the virtual variation δ d of its nodal DOFs values,
i.e.

δ u (ξ, η, z) = S (ξ, η, z)δ d , (2.94)

see also Eq. 2.87.
A volumetric external load is considered, whose components q =

[qx, qy, qz] are consistent with the S matrix reference system, i.e. the
local to the element, physical Cxyz one. If external load components
are defined in the context of a global reference system, straightforward
reference frame transformations are to be applied.

The virtual work performed by those distributed actions is first
integrated along the element domain, and then equalled to its nodal
counterpart δ d>G , thus leading to

δ d>G =

∫∫∫

Ω
(δ u )> q dΩ

=

∫∫∫

Ω

(
S δ d

)>
q dΩ

= δ d>
∫∫∫

Ω
S> q dΩ,

and finally to

G =

∫∫∫

Ω
S> q dΩ (2.95)

due to the general nature of δ d .
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The quadrature along the domain is performed according to the
methods introduced for deriving the element stiffness matrix. If a sur-
face or an edge load are supplied in place of the volumetric load vector
q , equation 2.95 integral may be adapted to span each loaded element
face, or edge.

In the case of low order isoparametric elements – e.g. the four-
noded quadrilateral shell element, an alternative, simplified procedure
for the consolidation of the distributed loads into nodal forces becomes
viable. According to such procedure, the element domain is partitioned
into influence volumes, one each node; the external load contributions
are then accumulated within each partition, and the resultant force
vector is applied to the associated node.

By moving such resultant force from the distribution Center of
Gravity (COG) to the corner node, momentum balance is naively dis-
regarded; the induced error however decreases with the load field vari-
ance across the element, and hence with the element size. Such error
vanishes for uniform distributed loads.

In the presence of a better established, work consistent counterpart,
such simplified procedure is mostly employed to set a rule-of-thumb
equivalence between distributed and nodal loads; in particular, the
stress-singular nature of a set of nodal loads may be easily pointed out
if it is observed that a finite load resultant is applied to influence areas
that cumulatively vanish with vanishing element size.
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2.6 Joining elements into structures.

2.6.1 Displacement and rotation field continuity

Displacement and rotation fields are continuous at the isoparametric
quadrilateral inter-element interfaces; they are in fact continuous at
nodes since the associated nodal DOFs are shared by adjacent elements,
and the field interpolations that occur within each quadrilateral domain
a) they both reduce to the same linear relation along the shared edge,
and b) they are performed in the absence of any contributions related
to unshared nodes or DOFs.

2.6.2 Expressing the element stiffness matrix in terms
of global DOFs

As seen in Par. 2.3.5, the stiffness matrix of each j-th element de-
fines the elastic relation between the associated generalized forces and
displacements, i.e.

G ej = K ej d ej (2.96)

where the DOFs definition is local with respect to the element under
scrutiny.

In order to investigate the mutual interaction between elements in
a structure, a common set of global DOFs is required; in particular,
generalized displacement DOFs are defined at each l-th global node,
i.e., for nodes interacting with the shell element formulation under
scrutiny,

d gl =




ugl

vgl

wgl

θgl

ϕgl

ψgl



. (2.97)

The global reference system OXY Z is typically employed in project-
ing nodal vector components. However, each l-th global node may
be supplied with a specific reference system, whose unit vectors are
ı̂gl, ̂gl, k̂gl, thus permitting the employment of non uniformly aligned
(e.g. cylindrical) global reference systems.
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Those nodal degrees of freedom may be collected in a global DOFs
vector

d>g =
[

d>g1 d>g2 . . . d>gl . . . d>gn
]

(2.98)

that parametrically defines any deformed configuration of the structure.
Analogously, a global, external (generalized26) forces vector may be

defined, that assumes the form

F>g =
[

F>g1 F>g2 . . . F>gl . . . F>gn
]

; (2.99)

since external (single DOF or “to ground”) and internal (multi DOF)
kinematic constraints are expected to be applied to the structure DOFs,
the following vector of reaction forces

R>g =
[

R>g1 R>g2 . . . R>gl . . . R>gn
]

(2.100)

is introduced. Many FE softwares – and MSC.Marc in particular – treat
external and internal constraints separately, thus leading to two set of
constraint actions, namely the (strictly named) reaction forces, and
the tying forces, respectively; for the sake of simplicity, the constraint
treatise is unified in the present contribution.

The simple four element, roof-like structure of Fig. 2.9 is employed
in the following to discuss the procedure that derives the elastic re-
sponse characterization for the structure from its elemental counter-
parts.

The structure comprises nine nodes, whose location in space is de-
fined according to a global reference system OXY Z, see Table 2.2.

The structure is composed by four, identical, four noded isopara-
metric shell elements, whose formulation is described in the preceding
section 2.3.

A grayscale, normalized representation of the element stiffness ma-
trix is shown in Figure 2.10, where the white to black colormap spans
from zero to the maximum in absolute value term.

The mapping between local, element based node numbering and
the global node numbering is reported in the connectivity Table 2.3.

Such i) local to global node numbering mapping, together with
ii) the change in reference system mentioned above, defines a set of

26Unless otherwise specified, the displacement and force terms refer to the DOFs,
and the suitable actions that perform work with their variation, respectively. They
are in fact generalized forces and displacements.
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ı̂
̂

ı̂
k̂

̂

g1

g3
g2

g5

g4

g6

g9

g8

g7

θe1n1 ı̂e1

we1n2 k̂e1

e1

e3

e2

e4

we1n2 k̂e1

θe1n1 ı̂e1

= ug2 ı̂g2 + vg2 ̂g2 + wg2 k̂g2

= θg1 ı̂g1 + ϕg1 ̂g1 + ψg1 k̂g1

k̂ı̂g∗
k̂g∗

̂g∗
ı̂

k̂
̂

ı̂
̂

k̂

Figure 2.9: A simple four-element, roof-like structure employed in dis-
cussing the assembly procedures. The elements are square, thick plates
whose angle with respect to the global XY plane is 30◦

node X Y Z

g1 −lc 0 +l
g2 0 +ls +l
g3 +lc 0 +l
g4 −lc 0 0
g5 0 +ls 0
g6 +lc 0 0
g7 −lc 0 −l
g8 0 +ls −l
g9 +lc 0 −l

Table 2.2: Nodal coordinates for the roof-like structure of Figure 2.9.
l is the element side length, c = cos 30◦ and s = sin 30◦
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Uni

Vni

Wni

Θni

Φni

Ψni

uni vni wni θni ϕni ψni

i = 1 . . . 4

Figure 2.10: A representation of the stiffness matrix terms for each
element in the example structure; the term magnitude is represented
through a linear grayscale, spanning from zero (white) to the peak
value (black).

n1 n2 n3 n4

e1 g1 g2 g5 g4
e2 g2 g3 g6 g5
e3 g4 g5 g8 g7
e4 g5 g6 g9 g8

Table 2.3: Element connectivity for the roof-like structure of Figure
2.9. As an example, the node described by the local numbering e3n2
is mapped to the global node g5.
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ue1ni

ve1ni

we1ni

θe1ni

ϕe1ni

ψe1ni

dg2dg1 dg3 dg4 dg5 dg6 dg7 dg8 dg9

ue2ni

ve2ni

we2ni

θe2ni

ϕe2ni

ψe2ni

dg2dg1 dg3 dg4 dg5 dg6 dg7 dg8 dg9

ue3ni

ve3ni

we3ni

θe3ni

ϕe3ni

ψe3ni

dg2dg1 dg3 dg4 dg5 dg6 dg7 dg8 dg9

ue4ni

ve4ni

we4ni

θe4ni

ϕe4ni

ψe4ni

dg2dg1 dg3 dg4 dg5 dg6 dg7 dg8 dg9

Pe1

Pe2

Pe3

Pe4

Figure 2.11: A grayscale representation of the terms of the four P ej

mapping matrices associated the elements of Fig. 2.9. The colormap
spans from white (zero) to black (one); the lighter and the darker
grey colors represent terms that equate in modulus sin 30◦ and cos 30◦,
respectively. 75
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elemental DOF mapping matrices, P ej , one each j-th element. Such
matrices are defined as follows: the i-th row the P ej matrix contains
the coefficients of the linear combination of global DOFs that equates
the i local DOF of the j-th element; an example is proposed in the
following to illustrate such relation.

With reference to the structure of Figure 2.9, we1n2 and θe1n1 re-
spectively represent the 10th and the 13th local degrees of freedom of
element 1.

Their global representation involves a subset of the g2 and g1 global
nodes DOFs, respectively, namely

we1n2 = 〈k̂e1, ı̂g2〉ug2 + 〈k̂e1, ̂g2〉vg2 + 〈k̂e1, k̂g2〉wg2 (2.101)

θe1n1 = 〈̂ıe1, ı̂g1〉θg1 + 〈̂ıe1, ̂g1〉φg1 + 〈̂ıe1, k̂g1〉ψg1 (2.102)

where ı̂e1,̂e1, k̂e1 are the orientation vectors of the element 1 local
reference system, ı̂g1,̂g1,k̂g1 and ı̂g2,̂g2,k̂g2 are the orientation vectors
of the global nodes 1 and 2 reference systems, and 〈·, ·〉 represents
their mutual scalar product, or, equivalently, the cosinus of the angle
between two unit vectors.

The 10th and the 13th row of the P e1 mapping matrix are defined
based on Eqs.2.101 and 2.102, respectively, and they are null except
for the elements

[
P e1

]
10,7

= 〈k̂e1, ı̂g2〉
[

P e1

]
13,4

= 〈̂ıe1, ı̂g1〉
[

P e1

]
10,8

= 〈k̂e1, ̂g2〉
[

P e1

]
13,5

= 〈̂ıe1, ̂g1〉
[

P e1

]
10,9

= 〈k̂e1, k̂g2〉
[

P e1

]
13,6

= 〈̂ıe1, k̂g1〉,

being ug2,vg2,wg2,θg1,φg1 and ψg1 the 7th, 8th, 9th, 4th, 5th and 6th
global degrees of freedom according to their position in d g.

Figure 2.11 presents a grayscale representation of the four P ej ma-
trices; please note the extremely sparse nature of those matrices, whose
number of nonzero terms scales with the single element DOF cardinal-
ity, whereas the total number of terms scale with the whole structure
DOF cardinality.

The rows of the rectangular P ej mapping matrix are mutually or-
thonormal; the mapping matrix is orthogonal in the sense of the Moore-
Penrose pseudoinverse, since its transpose and its pseudoinverse coin-
cide.
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g9

e3n3 ≡ g8

e3
ı̂g∗

k̂g∗

̂g∗

ı̂
k̂

̂

Vg8←e3 ̂g8

Vg8←e3 ̂g8 = Ue3n3 ı̂e3 + Ve3n3 ̂e3 +We3n3 k̂e3

e4
ı̂

̂

k̂

Vg8←e4 ̂g8

Vg8←e4 ̂g8 = Ue4n4 ı̂e4 + Ve4n4 ̂e4 +We4n4 k̂e4

g8 ≡ e4n4

Vg8 = Vg8←e3 + Vg8←e4

We4n4 k̂e4

Ue4n4 ı̂e4

̂g8 ⊥ ̂e4

Figure 2.12: Accumulation of elemental nodal actions at global nodes.

The elemental mapping P ej matrices constitute an artifice that
plays a double role in the local to global DOF mapping; if on one side
the j-th element DOFs may be derived from their global counterpart
as

d ej = P ej d g, ∀j (2.103)

on the other, the nodal actions required to oppose the elastic reactions
at each j-th element, as evaluated as in Eq. 2.96 according to the local
DOF system, may be collected at global nodes.

Such collection is illustrated in Figure 2.12 for the second DOF of
the global node g8, and in particular the force component Vg8, namely
the 44-th component of G g; such a force component collects the con-
tributions aligned with the ̂g8 unit vector from element 3, local node
3, and element 4, local node 4, named Vg8←e3 and Vg8←e4, respectively.

Figure 2.12 equations relate the nodal force components expressed
with respect to the element reference systems with the global force
component under scrutiny; in particular we have

Vg8←e3 = Ue3n3〈̂ıe3, ̂g8〉+ Ve3n3〈̂e3, ̂g8〉+We3n3〈k̂e3, ̂g8〉 (2.104)

Vg8←e4 = Ue4n4〈̂ıe4, ̂g8〉+ Ve4n4〈̂e4, ̂g8〉+We4n4〈k̂e4, ̂g8〉. (2.105)

If we want to collect the contribution along the global DOFs of the
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forces collected on element 4 in the algebraic relation

G g←e4 = P ′e4 G e4 (2.106)

the 44-th row of the P ′ - whose row and column cardinality equates
that of the global and the elemental DOF, respectively - may be com-
piled based on 2.105; in particular, its nonzero terms are

[
P ′e4

]
44,4

= 〈̂g8, ı̂e4〉
[

P ′e4

]
44,12

= 〈̂g8, k̂e4〉
[

P ′e4

]
44,8

= 〈̂g8, ̂e4〉

being 4,8,12 the index locations of Ue4n4, Ve4n4,We4n4 within G e4.
By repeating the procedure for each global DOF, and for each el-

ement, it is found that the P ′ej matrices equate the transpose of the
P ej matrices associated to the same element, and hence Eq. 2.105 may
be recast for each element as

G g←ej = P>ej G ej , ∀j (2.107)

thus obtaining a transformation from element DOFs to their con-
tributes to global counterparts.

The role of P>ej in such a local-to-global mapping Eq. pairs the
role of P ej in the global-to-local relation expressed in Eq. . A strict
inverse relation may not be defined due to the different cardinality of
the two DOF sets, and P ej lacks of a proper inverse, being in fact a
rectangular matrix.

However, due to the mutually orthonormal nature of the P ej matrix
columns, such a matrix may be defined orthonormal in the sense of the
Moore-Penrose pseudoinverse; the P>ej matrixes that, for each element,
control the local-to-global mapping are the pseudoinverses of the P ej

matrixes that regulate the global-to-local mapping.
Based on 2.96, 2.103 and 2.107, the contribution of the j-th element

to the elastic response of the structure may finally be described as the
vector of global force components

G g←ej = P>ej K ej P ej d g; (2.108)

that have to be applied at the structure DOFs in order to equilibrate
the elastic reactions that arise at the nodes of the j-th element, if a
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deformed configuration is prescribed for the latter according to the d g

global displacement mode.
By accumulating the contribution of the various elements in a struc-

ture, the overall relation is obtained

G g =
∑

j

G g←ej =


∑

j

P>ej K ej P ej


 d g = K g d g, (2.109)

that defines the K g global stiffness matrix as an assembly of the ele-
mental contributions. The contribute accumulation at each summatory
step is graphically represented in Fig. 2.13, in the case of the example
structure of Fig. 2.9.

The global stiffness matrix is symmetric, and it shows nonzero
terms at cells whose row and column indices are associate to two DOFs
that are bridged by a direct elastic link – i.e., an element exists, that
insists on both the nodes those DOFs pertain; since only a limited
number of elements insist on each given node, the matrix is sparse, as
shown in Fig. 2.13d.

An favourable numbering of the global nodes may be searched for,
such that the nonzero terms are clustered within a (possibly) nar-
row band around the diagonal; the resulting stiffness matrix is hence
banded, condition this that reduces both the storage memory require-
ments, and the computational effort in applying the various algebraic
operators to the matrix.

The stiffness matrix (half-)bandwidth may be predicted by evalu-
ating the bandwidth required for storing each element contribution

bej = (imax − imin + 1) l, (2.110)

and retaining the
b = max

ej
bej (2.111)

peak value; in the formula 2.110, l is the number of DOF per element
node, whereas imax and imax are the extremal integer labels associated
to the element nodes, according to the global numbering.
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dg1 dg2 dg3 dg4 dg5 dg6 dg7 dg8 dg9

F g1

F g2

F g3

F g4

F g5

F g6

F g7

F g8

F g9

bsymm

(a) (b)

(c) (d)

Figure 2.13: Graphical representation of the assembly steps for the
stiffness matrix of the Fig. 2.9 structure. The zero-initialized form for
the matrix that precedes the (a) step is omitted.
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2.6.3 External forces assembly

The element vector forces are accumulated to derive global external
forces vector F g, as in

F g =
∑

j

P>ej F ej ; (2.112)

the transposed P>ej mapping matrix is employed to translate the ac-
tions on the local DOFs to their global counterpart.
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2.7 Constraints.

2.7.1 A pedagogical example.

Figure 2.14 represents a simple, pedagogical example of a three d.o.f.
elastic system subject to a set of two kinematic constraints. The first,
I, embodies a typical multi d.o.f. constraint27, namely a 3:1 leverage
between the vertical displacements d3 and d1 The second, II, consists
in a single d.o.f., inhomogeneous constraint that imposes a fixed value
to the d2 vertical displacement.

Both the kinematic constraint may be cast in the same algebraic
form ∑

i

αji d i = α>j d = ∆j (2.113)

where j = I, II and i = 1 . . . 3 the indexes span through the constraints
and the model d.o.f.s, respectively, and the α j equation coefficient
vectors and inhomogeneous terms are

α>I =
[
3 0 1

]
∆I = 0

α>II =
[
0 1 0

]
∆II = 0.2

In the absence of constraints, viable system configurations span the
whole R3 space of Fig. 2.15 (a); viable configurations with respect to
the first constraint alone span the hyper-plane/subspace28 I, whereas
the subspace II collects the feasible configurations with respect to the
second constraint.

It is relevant to underline that the feasible configuration hyper-
planes I and II are normal to the associated coefficient vectors α I and
α II, respectively.

The I ∩ II intersection subspace collects the configurations that
satisfies both the constraints; such subspace is orthogonal to both α I

and α II.
If the constraints are assumed as ideal29, the exerted reactions are

orthogonal to the allowed displacements; reaction forces are confined on

27usually, and rather improperly, named multipoint constraint (MPC)
28The subspace of the feasible configurations with respect to a single, scalar linear

equation is an hyperplane in the configuration space; due to the limited d.o.f. set
cardinality, Figure 2.15 (a) represents a 2d plane within a 3d space. The hyper-
nomenclature is preserved to

29or, namely, frictionless
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d1

d2
d3

1:3

0.2 mm

0 d1 + 1 d2 + 0 d3 = 0.2
3 d1 − 0 d2 + 1 d3 = 0I:

II:(a)

(b)

Figure 2.14: A pedagogical elastic three d.o.f. system, (a), subject to
a few kinematic constraints (b).

a subspace of the reaction space that corresponds to30 the orthogonal
complement of the feasible subspace of the configuration space.

By moving on the constraint reaction space shown in 2.15 (b), the
reaction forces associated to constraint I and II are thus proportional
to the α I and α II vectors, respectively; the cumulative constraint
reactions lie on the linear span of those two vectors, namely L (αI, αII).

With reference to some concepts anticipated from the next para-
graph, we may set d1 as the only retained31 DOF, thus leading to Λ
and ∆ terms equal to, respectively,

Λ =




1
0
−3


 ∆ =




0
0.2
0


 .

2.7.2 General formulation

A set of m constraints

dj =
∑

di∈ d R

λjidi + ∆j (2.114)

30i.e. the two subspaces share, with adjusted physical dimensions, the same gen-
erator vectors.

31alternatively, d3 may be chosen for such a role.
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d1

d2

d3
R1

R2

R3

II

I

I ∩ II

(a) configuration space (b) reaction space

‖ αI

L (αI, αII), ⊥ (I ∩ II)
⊥ II, ‖ αII

⊥ I, ‖ αI

⊥ αI

⊥ αII

‖ I ∩ II

I ∩ II

‖ αII

Figure 2.15: Allowed system configurations and constraint reactions
for the pedagogical example of Fig. 2.14. The allowed displacement
sets are easily derived as the homogenous counterpart of (a), and are
not represented here.

is defined that states the linear32 dependence of a partition subset of the
d DOFs vector terms, the tied ones, on the remaining di terms, that
retain their independent nature. The independent terms are collected
within a reduced cardinality DOF vector d R, and they are referred to
as the retained ones33.

Also the inhomogeneous ∆j term is provided for in Eqn. 2.114 to
accomodate constraints of the nonzero fixed displacement kind.

The following algebraic relation may then be derived, that defines
the initial, unabridged d DOF vector terms based on the subset that
produces the retained DOF vector d R

d = Λ d R + ∆ ; (2.115)

the ∆ n-sized column vector collects the various ∆j terms of the 2.114
constraint equations, and the n rows, n−m columns Λ matrix collects

• the identity relations between corresponding retained DOFs terms
that appear in both d and d R, and

32more precisely, linear variation dependence, due to the presence of the inhomo-
geneous term.

33 Here, the definition of the overall, retained, and tied DOF vectors, ( d , d R,
d T = d \ d R, respectively) is overloaded with both its DOF and DOF index
(ordered) set counterparts, thus allowing e.g. the di ∈ d R notation in a vector
element context, and the i ∈ d R notation in an integer index context.
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=

dl 1

dRh

0

dk 0

+

0

d̄k

di ∆jλji

retained dof.

tied dof.

tied dof.

dk = d̄k
fixed disp.

general

dl = dRh

Λd = dR + ∆

h

l

k

i

Figure 2.16: Graphical representation for the Λ matrix in Eq. 2.115;
representative matrix rows are illustrated for a retained DOF, and for
two tied DOFs, namely a fixed displacement subcase, and the general
case.

• the λji coefficients that define the linear variation dependence of
the tied dj DOF on the retained di DOF.

Figure 2.16 illustrates a few representatives of the rows whose as-
sembly defines the Λ . In the case of a retained global DOF, dl, which

finds a counterpart in the h-th element of d R, = dR
h , the associated

row contains a single unit term at of the intersection of the l-th row
with the h-th column, being zero elsewhere. In the case of a tied DOF
of the plain fixed displacement kind (single DOF constraint), the asso-
ciated row in Λ is null, and the associated inhomogeneous term in ∆
equates the imposed value for the displacement. In the case of a tied
DOF of the general kind, see Eq. 2.115, the associated row in the Λ
matrix is build upon the λji linear relation coefficients.

It is finally worth to mention that the virtual displacements in the
neighborhood of a feasible constrained configuration are restricted to
the linear combinations of the Λ matrix columns Λ j , i.e.

δ d = Λ δ dR = Λ 1 δ dR
1 + Λ 2 δ dR

2 + . . . (2.116)
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with arbitrary virtual displacement values δ dR
j for the retained DOF

alone.
The ideal constraint hypothesis requires the reaction force vector R

to be orthogonal to a generic virtual displacement, and such condition
hods if and only if R is orthogonal to each the Λ matrix columns, i.e.

〈Λ j , R 〉 = 0 ∀j, (2.117)

or, equivalently,
Λ>R = 0 . (2.118)

2.8 The system of constrained equilibrium equa-
tions, and its solution.

The nodal DOF equilibrium equations derived by pairing i) the K d
external forces required to keep the structure in a d deformed con-
figuration, see Eq. 2.109, ii) the actual external forces F which are
applied to the elements as distributed loads, see Eq. 2.112, or directly
at nodes in form of concentrated loads, and iii) the reaction forces R
may be cast as

K d = F + R . (2.119)

Here, d and R are both unknown.
If constraints are applied, we have

K
(

Λ d R + ∆
)

= F + R (2.120)

and
K Λ d R =

(
F − K ∆

)
+ R , (2.121)

where the inhomogeneous part of the constraint equations is de facto
assimilated to a further contribution to the external loads.

By projecting the equations on the subspace of allowed configura-
tions

Λ>K Λ
︸ ︷︷ ︸

K R

d R = Λ>
(

F − K ∆
)

︸ ︷︷ ︸
F R

+ Λ>R
︸ ︷︷ ︸

=0

, (2.122)

the contribution of the unknown reaction forces, that are normal to
such a subspace – see Eq. 2.118, vanishes.
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The linear system of constrained nodal DOF equilibrium equations
is then set as

K R d R = F R (2.123)

and it may be solved for the retained DOF vector d R.
Once the solution vector d ∗R is found in terms of displacements

at retained DOFs, the overall displacement vector and the unknown
reaction forces may be derived as

d ∗ = Λ d ∗R + ∆ ; (2.124)

and
R ∗ = K

(
Λ d ∗R + ∆

)
− F . (2.125)

Then, for each j-th element, the local DOFs vector may be derived
based on

d ∗ej = P ej d ∗, (2.126)

and consequently its in-plane

ε =
(

B 0
ej(ξ, η) + B 1

ej(ξ, η)z
)

d ∗ej (2.127)

and out-of-plane strain fields

γ̄ = B γ̄
ej(ξ, η) d ∗ej , (2.128)

from which the stress components may be easily derived.

2.8.1 Rigid body link RBE2

A master (or retained, control, independent, etc.) C node is consid-
ered, whose coordinates are defined as xC , yC , zC in a (typically) global
reference system, along with a set of n Pi nodes whose coordinates are
xi, yi, zi.

A kinematic link is to be established such that the DOFs – or a
subset of them – associated to the Pi nodes follow the rototranslations
of the C control according to the rigid body motion laws.
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In the case of a fully constrained Pi node we have




ui
vi
wi
θi
φi
ψi




=




1 0 0 0 +(zi − zC) −(yi − yC)
0 1 0 −(zi − zC) 0 +(xi − xC)
0 0 1 +(yi − yC) −(xi − xC) 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




︸ ︷︷ ︸
L i

·




uC
vC
wC
θC
φC
ψC




(2.129)
where u, v, w (θ, φ, ψ) are the translation (rotation) vector components
with respect to the x, y, z cartesian reference system. A subset of the
above DOF dependency relations may be cast to obtain a partial con-
straining of the Pi node; a free relative motion of such node with respect
to the rigid body is allowed at the unconstrained DOFs.

External actions that are applied to tied Pi DOFs are reduced to
the master node in form of a statically equivalent counterpart; the
contributions deriving from each Pi node are finally accumulated.
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2.9 Advanced modeling tools
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2.9.1 Inertia relief

Inertia relief34 refers to an analysis procedure that allows unconstrained
systems – or systems otherwise susceptible to stress-free motions – to
be subjected to a quasi-static analysis by taking rigid body inertia
forces into account.

Conventional static analysis cannot be performed for such systems
since, in the absence of constraints, the stiffness matrix is singular. The
structure response is measured relative to a steady state accelerating
frame, whose motion is induced by the (usually nonzero) external load
resultants.

The inertia relief solution procedure provides for three steps, namely
i) the rigid body mode evaluation, ii) the assessment of the inertia re-
lief loads, and iii) the solution of a supported, self-equilibrated static
loadcase within the moving frame.

A set of nodal DOFs is supplied, one each expected rigid body
motion, whose imposed displacements values uniquely define the struc-
ture positioning in space; also, they may be employed in supporting
the structure to untangle the stiffness matrix rank-deficiency.

The t l rigid body modes are evaluated by sequentially setting each
of these support DOF to unity, while retaining the others to zero, and
solving for the system of nodal equilibrium equations

K d = F , (2.130)

where K is the structure stiffness matrix, in the absence of further
external loads, i.e. F = 0. Since the tied/retained condition of the
structure DOFs does not vary throughout the sequence of aforemen-
tioned loadcases, comprised of the final step introduced in the following,
a single L L> Cholesky system matrix decomposition is required by
the procedure, whose computational burden is thus not significantly
increased with respect to the usual static solution.

A rigid body, steady state acceleration field is defined as the linear

34XXX some cut and paste from the MSC.Marc vol A manual, please rewrite as
required to avoid copyright infringement.
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combination of the so defined t l rigid body modes

d̈ =
[
· · · t l · · ·

]
︸ ︷︷ ︸

T




...
αl
...




︸ ︷︷ ︸
α

, (2.131)

whose αl coefficients define the modal acceleration vector α . Those
acceleration terms are then evaluated according to the inertial equilib-
rium of the structure under the applied F external loads, condition,
this, that may be stated as

T>M T α = T> F (2.132)

The projection of the equilibrium equations onto the subspace defined
by the linear span of the t l rigid body mode vectors – i.e. the left
multiplication of both the equation sides by the T> matrix, is solved
in place of the overdetermined linear system

M T α = F [+ R l]

since the R l reaction forces associated to the rigid body constraints
balance the equilibrium residual components that are orthogonal to
such allowed configuration subspace.

The inertia relief forces may then be quantified as M T α , and su-
perposed to the initial external loads, thus leading to a self equilibrated
loading condition in the context of the steady state accelerating frame;
by employing the support DOFs to establish a positioning constraint
set, the elastic problem may finally be solved in the form

K d = F − M T α , (2.133)

The d displacement components are expressed with respect to a ref-
erence frame that clings to the possibly accelerating structure through
the support DOFs; due to the self-equilibrated nature of the applied
loads in the moving frame, reaction forces at supports are zero.

As a closing comment, the MSC.Marc solver employs a lumped
definition for the system mass matrix for evaluating inertia relief forces.
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2.9.2 Harmonic response analysis

The equilibrium equations of a multiple DOF system subject to elastic,
inertial and viscous actions may be stated in the general form

M d̈ + C ḋ + K d = f (t), d = d (t) (2.134)

where:

• M is the mass matrix, which is symmetric and positive definite;

• C is the viscous damping matrix, which is symmetric and posi-
tive semidefinite;

• K is the elastic stiffness matrix, which is symmetric and posi-
tive semidefinite: complex terms may appear within the stiffness
matrix to represent structural damping contributions;

• f (t) is the vector of the external (generalized) forces;

• d (t) collects the system DOFs, which vary in time.

The system response is assumed linear – a strong assumption, this,
that hardly holds in complex structures as the automotive chassis under
scrutiny. The lack of nonlinear analysis tools whose modeling and
computational effort is comparable with respect to the one presented in
the present section, pushes for some laxity in the linearity prerequisite
check, and for the acceptance of a certain extent of error.

The applied force is assumed periodic in time, and so is the long
term solution, if linearity holds. Moreover, Fourier decomposition may
be applied, and there is no lack in generality in further assuming an
harmonic forcing term, and hence an harmonic solution. We have

f (t) =
f̄ ejωt + f̄ ∗e−jωt

2
= Re( f̄ ejωt) (2.135)

where the asterisk superscript denotes the complex conjugate variant
of the base vector. We recall that the compact notation

f (t) = f̄ ejωt (2.136)
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extensively employed below defines a complex form for the driving
force, whose real part is the portion which is physically applied to
the nodes over time, i.e.

Re( f̄ ejωt) = Re( f̄ ) cosωt− Im( f̄ ) sinωt (2.137)

This compact formalism is not rigorous but still it is effective, and
hence commonly employed. Any phase difference amongst the applied
nodal excitations may be described by resorting to the complex nature
of the f̄ vector terms.

In the neglection of the transient response, the harmonic tentative
solution

d (t) = d̄ ejωt (2.138)

is substituted within Eq. 2.134, thus obtaining

(
−ω2 M + jωC + K

)
d̄ = f̄ (2.139)

where the ejωt time varying, generally nonzero factors are simplified
away.

Expression 2.140 defines a system of linear complex equations, one
each DOF, in the complex unknown vector d̄ ; equivalently, each com-
plex equation and each unknown term may be split into the associ-
ated real and imaginary parts, thus leading to a system of linear, real
equations whose order is twice the number of the discretized structure
DOFs.

The system matrix varies with the ω parameter, and in particular
its stiffness contribute K is dominant for low ω values, whereas the
C , M terms acquire relevance with growing ω.

In distributed inertia systems, however, it is a misleading claim
that the stiffness matrix contribution becomes negligible with high ω
values, since – with the notable exception of external loads that are
directly applied to concentrated masses or rigid bodies – the pulsation
is unphysically high above which such behaviour arises.

Since Eqns. 2.140 are independently solved for each ω value, it
constitutes no added complexity to let M , C , K and f̄ vary according
to the same parameter.

Finally, in the absence of the damping-related imaginary terms
within the system matrix, the Eq. 2.140 problem algebraic order is
led back to the bare number of system DOFs; in fact, two independent
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real system of equations – that share a common L L> matrix decom-
position – may be cast for the real and the imaginary parts of d̄ and
f̄ .

2.9.3 Modal analysis

The present paragraph briefly deals with the structure’s natural modes,
i.e. those periodic35 motions that are allowed according to Eq. 2.134,
in the further absence of externally applied loads.

A necessary condition for a motion to endure in the absence of
a driving load is the absence of dissipative phenomena; it is hence
necessary to have a zero C damping matrix, whereas the K stiffness
matrix must be free of imaginary terms. This hypothesis holding, Eq.
2.140 is reduced to the following real-term algebraic form

(
−ω2 M + K

)
d̄ = 0 (2.140)

whose nontrivial solutions constitute a set of (ω2
i , d̂ i) generalized eigen-

value/eigenvector pairs, one each system DOF, if eigenvalue multiplic-
ity is taken into account.

In the context of each (ω2
i , d̂ i) pair, ωi is the natural pulsation

(ωi = 2πfi, where fi is the natural frequency), whereas the d̂ i vector
of generalized displacemts is named natural mode.

The extraction of the Eq. 2.140 nontrivial solutions reduces to a
standard eigenvalue problem is the algebraic form is left-multiplied by
the mass matrix inverse, i.e.

(
M−1 K − ω2 I

)
d̂ = 0 ; (2.141)

the availability of solvers that specifically approach the generalized
problem avoid such computationally uneconomical preliminary.

It is worth to recall that in the case of eigenvalues with non-unit
multiplicity – concept, this, that is to be contextualized within the lim-
ited precision floating point arithmetics36 – the associated eigenvectors
must be considered only through their linear combination; the specific
selection of the base elements for representing such a subspace (i.e.,

35harmonic in the context of linearly behaving systems
36XXX
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each single eigenvector) derives in fact from the unpredictable inter-
action between the truncation error and the inner mechanics of the
numerical procedure.

Also, the eigenvectors that are associated to eigevalues of unit mul-
tiplicity are returned by the numerical solver in the misleading form of
a definite vector, whereas an arbitrary (both in sign and magnitude)
scaling factor has to be prepended.

In particular, any speculation which is not robust with respect to
such arbitrary scaling (or combination) is of no engineering relevance,
and must be avoided.

Finally, in continuous elasticity, no upper bound exists for natural
frequencies; in Finite Element (FE) discretized structure, an apparent
upper bound exists, which depends on local element size37.

A common normalizing rule for the natural modes is the one that
produces a unit modal mass mi, i.e.

mi = d̂>i M d̂ i = 1 (2.142)

this rule is e.g. adopted by the MSC.Marc solver in its default config-
uration.

The resonant behaviour of the system in correspondence with a
natural frequency may be investigated by substituting the following
tentative solution

x (t) = a d̂ i sin(ωit) (2.143)

within the dynamic equilibrium equations 2.134, with

f(t) = f̂ cos(ωit), (2.144)

and thus obtaining

(
−ω2

i M + K
)

d̂ i︸ ︷︷ ︸
= 0

ai sin(ωit) + ωiai C d̂ i cos(ωit) = f̄ cos(ωit).

(2.145)
By simplifying away the generally nonzero time modulating factors,

and by left-multiplying both equation sides by d̂> – i.e. by projecting

37In particular, the natural oscillation period for the highest dynamic mode is
estimated with order of magnitude precision as the minimum time it takes a pressure
wave to travel between two different nodes in the discretized structure.
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the equation residual along the subspace defined by the eigenvector
itself, we obtain an amplitude term in the form

ai =
d̂> f̄

ωi d̂>C d̂ i

(2.146)

whose singularity is prevented only a) in the presence of a damping
matrix that associates nonzero and non-orthogonal viscous reactions
to the motion described by the natural mode under scrutiny, or b) if
the driving load is orthogonal to such natural mode, i.e. it unable to
perform periodic work on such a motion. The nature of the expression
2.146 numerator will be further discussed in the following paragraph.

2.9.4 Harmonic response through mode superposition

In the case the eigenvalues associated with the dynamic modes are all
distinct38, the following orthogonality conditions hold

d̂>j M d̂ i = miδij d̂>j K d̂ i = miω
2
i δij (2.147)

where δij is the Kroneker delta function, and mi = 1 is the i-

th modal mass, which is unitary due to the the d̂ i unit modal mass
normalization.

It is further assumed that it is possible to describe the elastic body
motion through a linear combination of a (typically narrow) subset of
the dynamic natural modes. Such assumption may be rationalized in
two equivalent ways: on one hand, the contribution of the neglected
modes is assumed negligible, and hence ignored; on the other hand, it
is imagined that a set of kinematic constraints is imposed, that rigidly
impede any additional system motion with respect to the chosen set.
According to this latter explanation, reaction forces will be raised that
absorb any equilibrium residual term which is orthogonal with respect
to the allowed displacements.

The subset defined by the first m eigenvectors (1 ≤ m � n) are
commonly employed, whereas different assortments are possible; a con-
trol calculation perfomed with a wider base may be employed for error
estimation.

38condition, this, that is assumed to hold; a slightly perturbed FE discretiza-
tion may be effective in separating the instances of a theoretically multiple natural
frequency.
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By stacking those first m normalized column eigenvectors into the
Ξ matrix below,

Ξ =
[

d̂ 1 · · · d̂ l · · · d̂m

]
, (2.148)

any d̄ configuration belonging to the linear span of the selected modes
may be expressed through a vector of m modal coordinates ξ̄l, as in

d̄ = Ξ ξ̄ (2.149)

.
Due to the natural modes orthogonality conditions 2.147, the Ξ

tranformation matrix diagonalizes both the mass and the stiffness ma-
trices, since

Ξ>M Ξ = I Ξ>K Ξ = Ω = diag(ω2
l ); (2.150)

by appling such transformation to the damping matrix, however, a
dense matrix is generally obtained.

The Rayleigh or proportional damping matrix definition assumes
that the latter may be passably represented as a linear combination of
the mass matrix and of the stiffness matrix: in particular

C = αM + βK (2.151)

where α and β are commonly named mass and stiffness matrix multi-
pliers, respectively; according to such assumption, the damping matrix
is also diagonalized by the Ξ tranformation matrix.

Equation 2.140 algebraic problem may be cast in terms of the m ξl
modal unknowns, thus obtaining

Ξ>
(
−ω2 M + jωC + K

)
Ξ ξ̄ = Ξ> f̄ (2.152)

which reduces to the diagonal form

(
−ω2 I + jω

(
α I + β Ω

)
+ Ω

)
ξ̄ = Ξ> f̄ , (2.153)

or, equivalently, to the set of m independent complex equations

(
−ω2 + jω

(
α+ βω2

l

)
+ ω2

l

)
ξl = ql, j = 1 . . .m (2.154)
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where ql =
〈

d̂ l, f̄
〉

is the coupling factor between the external load

and the l-th natural mode.
The algebraic equation above may be interpreted as the charac-

teristic equation of an harmonically driven single DOF oscillator that
exhibits the following properties:

• its mass is unity;

• its natural frequency equals that of the l-th natural mode ωl;

• its damping ratio ζl is a combination of the two Rayleigh damping
coefficients, i.e.

ζl =
1

2

(
α

ωl
+ βωl

)
;

• the external load real(imaginary) term is defined as the cyclic
work that the external load performs upon a system motion de-
scribed as the sinusoidal (cosinusoidal) modulation in time of the
l-th modal shape, divided by π.39

The uncoupled equations 2.154 may be solved resorting to complex
division arithmetics, thus leading to the definition of the ξ̄l modal am-
plitude and phase terms; in particular we have that the l-th modal
shape is modulated in time according to the function

ξl(t) = Re(ξ̄l) cosωt− Im(ξ̄l) sinωt

=
∣∣ξ̄l
∣∣ cos (ωt+ ψl − φl)

whose terms are detailed in the following.
The auxiliary parameters

al = 1− r2
l bl = 2ζlrl rl =

ω

ωl

are first defined; we then have the oscillation amplitude and phase

39In the case of a concentrated load that act on a single DOF, qj equates the prod-
uct of the load magnitude with the associated component in d̂ l, i.e. the generalized
displacement at the specific node, as shown by the FE postprocessor.
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terms

∣∣ξ̄l
∣∣ =
|q̄l|
ω2
l

1√
a2
l + b2l

ψl = arg(q̄l)

φl = arg(al + jbl)

or, equivalently, the real and imaginary parts

Re(ξ̄l) =
1

ω2
l

al Re(q̄l) + bl Im(q̄l)

a2
l + b2l

Im(ξ̄l) =
1

ω2
l

al Im(q̄l)− bl Re(q̄l)

a2
l + b2l

.
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2.9.5 Linearized pre-buckling analysis

A few notes.
According to the linearized pre-buckling analysis, the structure is

considered in an oxymoronic configuration which is both pre-stressed
and undeformed.

The σ 0 pre-stress condition is evaluated through a linear prelim-
inary analysis of the structure subject to a set of applied loads, and
potentially inhomogeneous constraints; both the preload and the asso-
ciate stress field may be scaled by a common λ amplification factor,
and the structure behaviour is parametrically examined with varying
λ.

The displacement and rotation fields associated this preliminary
analysis are not however retained in the subsequent step, in contrast
to the pre-stress; such looseness is commonly justified based on the
assumed smallness of such deflections.

For each element of the structure, the stiffness matrix is derived
by a) taking into account the contribution of the σ 0 pre-stress to the
internal virtual work, and b) by employing a second order, nonlinear,
large rotation formulation for the B matrix that derives the strain
tensor from nodal DOFs. Details are here omitted40, and only the
following placeholder formula for the internal virtual work is proposed

δUi =

∫∫∫

V
δ ε>

(
σ 0 + D ε

)
dV

=

∫∫∫

V

[
B ( d )δ d

]> (
σ 0 + D B ( d ) d

)
dV

= . . .

= δ d
((

K M
ej + K G

ej

)
d + o ( d )

)
.

The resulting element stiffness matrix is obtained as the sum of two
distinct contributions; the first contribution K M

ej is named material
stiffness matrix and, in the absence of large element reorientation in
space, it coincides with the customary definition of element stiffness
matrix. The second contribution K G

ej is named geometric stiffness
matrix and it embodies the corrective terms due to the interaction
of the pre-stress with the rotations; such term is invariant with the

40see e.g. reference [4]
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material properties, and it scales with the pre-stress itself, i.e. with the
λ amplification factor. This second contribution embodies the stress
stiffening and stress softening effects.

Both the two terms are obtained by relying on the initial coor-
dinates of the element nodes, thus effectively neglecting the preload-
induced deflections.

The elemental material and geometric stiffness matrix are then as-
sembled into their global counterparts, and contraints are applied that
are consistent41 with the ones employed in deriving the pre-stress.

The following relation is thus obtained in the neighborhood of a
λ-scaled, pre-stressed configuration

(
K M + λK G

)
δ d = δ F (2.155)

that relates a small variation in the externally applied actions δ F with
the required adjustments in the structure configuration δ d for the
sake of equilibrium; the cumulative K m +λK g term is named tangent
stiffness matrix upon its role in locally orienting the equilibrium path.

Of a particular interest is the case of a nonzero variation in config-
uration for which equilibrium is preserved in the absence of external
load variation; such condition is a prerequisite for a bifurcation of the
equilibrium path. We have in particular an homogenous system of
equations (

K M + λi K G
)
δ d̂ i = 0 (2.156)

whose nontrivial solutions are in form of generalized42 eigenpairs (λi, δ d̂ i),
with λi values that zero the determinant of the tangent stiffness matrix,
and are hence named critical pre-stress (or preload, or load) amplifi-
cation factor.

41not stricty equal in theory, since some variations are allowed with respect in
particular positioning and symmetry constraints. FE packages may however limit
such theoretically allowed redefinition of constraints.

42an equivalent, standard (
A − ηi I

)
v i = 0

eigenproblem may be defined with

A =
[

K M
]−1

K G, λi = −1/ηi, v i = δ d̂ i.
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|λ1|F λ2F

moltepl. 2

minimum λi in absolute value minimum λi > 0

Figure 2.17: In the case the load that induces the pre-stress state
is subject to inversion, the minimum amplification factor in modulus
is to be considered. On the other hand, if a load inversion may be
excluded, the minimum among the positive amplification factors is to
be considered.

In correspondence of critical λi values, the elastic reactions are
unable to restrain an arbitrary scaled δ d̂ i perturbation of the structure
configuration, and the related variation in stress/strain values, thus
obtaining a indifferent equilibrium condition.
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Chapter 3

Miscellaneous
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⊥

‖1

‖2

PP ′u′⊥ = −u⊥
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Figure 3.1: An overview of symmetrical and skew-symmetrical (gener-
alized) loading and displacements.

3.1 Symmetry and skew-symmetry conditions

Symmetric and skew-symmetric loading conditions are mostly rele-
vant for linearly-behaving systems; a nonlinear system may develop
an asymmetric response to symmetric loading (e.g. column buckling).

Figure 3.1 collects symmetrical and skew-symmetrical pairs of vec-
tors and moment vectors (moments); those (generalized) vectors are
applied at symmetric points in space with respect to the reference
plane. Normal and parallel to the plane vectors are considered, that
may embody the same named components of a general vector.

The pair members may be moved towards the reference plane up
to a vanishing distance ε; a point on the reference plane coincides with
its image. In the case different (in particular, opposite and nonzero)
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field vectors are associated to the two coincident pair members, single
valuedness does not hold at the reference plane; such condition deserves
an attentive rationalization whenever a physical field (displacement
field, applied force field, etc.) is to be represented.

Those vector and moment pairs may represent generalized forces
(both internal and external) and displacements.

The ∗ (generalized) displacement components may induce material
discontinuity at points laying on the [skew-]symmetry plane, if nonzero.
They have to be constrained to zero value at those points, thus intro-
ducing [skew-]symmetry constraints.

These constraints act in place of the portion of the structure that is
omitted from our model, since the results for the whole structure may
be derived from the modeled portion alone, due to [skew-]symmetry.

In case of symmetry, a constraint equivalent to a planar joint is
to be applied at points laying on the symmetry plane for ensuring
displacement/rotation continuity between the modeled portion of the
structure, and its image. In case of skew-symmetry, a constraint equiv-
alent to a doweled sphere - slotted cylinder joint (see Figure 3.1), where
the guide axis is orthogonal to the skew-symmetry plane, is applied at
the points belonging to the intersection between the deformable body
and the plane.

The � internal action components are null at points pertaining
to the [skew-]symmetry plane, since they would otherwise violate the
action-reaction law. The complementary † internal action components
are generally nonzero at the [skew-]symmetry plate.

The † external action components are not allowed at points along
the [skew-]symmetry plane; instead, the complementary � generalized
force components are allowed, if they are due to external actions.

In the case of a symmetric structure, generally asymmetric applied
loads may be decomposed in a symmetric part and in a skew-symmetric
part; the problem may be solved by employing a half structure model
for both the loadcases; the results may finally be superposed since the
system is assumed linear.

3.2 Periodicity conditions

TODO, if needed.

105



i
i

“dispensa˙2018˙master” — 2019/6/7 — 23:37 — page 106 — #107 i
i

i
i

i
i

Figure 3.2: The doweled sphere - slotted cylinder joint, which is asso-
ciated to the skew-symmetry constraint. In this particular application,
the cylindrical guide may be considered as grounded.
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